期刊论文详细信息
BMC Medical Genetics
CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis
John AL Armour3  Marie-Anne Shaw2  Suzanne Anderson5  Brian Eley4  Mike Levin1  Jon Goulding3  Carmen Taype2  Danielle Carpenter3 
[1] Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa;Medical Research Council Unit, Banjul, Fajara, The Gambia
关键词: MIP-1α;    CCR5;    Association;    Mycobacterium tuberculosis;    CCL3L1;   
Others  :  1122542
DOI  :  10.1186/1471-2350-15-5
 received in 2013-10-02, accepted in 2013-12-19,  发布年份 2014
PDF
【 摘 要 】

Background

Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB.

Methods and results

Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0–6 copies per diploid genome (pdg) in Peru, between 0–12 pdg in !Xhosa samples and between 0–10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48).

Conclusions

The case–control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.

【 授权许可】

   
2014 Carpenter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214021937826.pdf 449KB PDF download
Figure 3. 37KB Image download
Figure 2. 35KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kaufmann SHE: Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002, 61(suppl 2):ii54-ii58.
  • [2]Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL: Cytokine production at the site of disease in human tuberculosis. Infect Immun 1993, 61(8):3482-3489.
  • [3]Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR: An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993, 178(6):2249-2254.
  • [4]Schluger NW, Rom WN: Early responses to infection: chemokines as mediators of inflammation. Curr Opin Immunol 1997, 9(4):504-508.
  • [5]Gale LM, McColl SR: Chemokines: extracellular messengers for all occasions? Bioessays 1999, 21(1):17-28.
  • [6]Cook DN, Smithies O, Strieter RM, Frelinger JA, Serody JS: CD8+ T cells are a biologically relevant source of macrophage inflammatory protein-1a In Vivo. J Immunol 1999, 162(9):5423-5428.
  • [7]Bhattacharyya S, Ghosh S, Dasgupta B, Mazumder D, Roy S, Majumdar S: Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. J Infect Dis 2002, 185(12):1704-1708.
  • [8]Rhoades ER, Cooper AM, Orme IM: Chemokine response in mice infected with Mycobacterium tuberculosis. Infect Immun 1995, 63(10):3871-3877.
  • [9]Saukkonen JJ, Bazydlo B, Thomas M, Strieter RM, Keane J, Kornfeld H: {beta}-Chemokines are induced by mycobacterium tuberculosis and inhibit its growth. Infect Immun 2002, 70(4):1684-1693.
  • [10]Sadek MI, Sada E, Toossi Z, Schwander SK, Rich EA: Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 1998, 19(3):513-521.
  • [11]Zhu XW, Friedland JS: Multinucleate giant cells and the control of chemokine secretion in response to Mycobacterium tuberculosis. Clin Immunol 2006, 120(1):10-20.
  • [12]Mayanja-Kizza H, Johnson JL, Hirsch CS, Peters P, Surewicz K, Wu M, Nalugwa G, Mubiru F, Luzze H, Wajja A, et al.: Macrophage-activating cytokines in human immununodeficiency virus type 1-Infected and -uninfected patients with pulmonary tuberculosis. J Infect Dis 2001, 183(12):1805-1809.
  • [13]Berkman N, John M, Roesems G, Jose PJ, Barnes PJ, Chung KF: Inhibition of macrophage inflammatory protein-1 alpha expression by IL- 10. Differential sensitivities in human blood monocytes and alveolar macrophages. J Immunol 1995, 155(9):4412-4418.
  • [14]Standiford T, Kunkel SL, Liebler JM, Burdick MD, Gilbert AR, Strieter RM: Gene expression of macrophage inflammatory protein -1alpha from human blood monocytes and alveolar macrophages is inhibited by interleukin-4. Am. J. Respir. Cell Mole Biol 1993, 9:192-198.
  • [15]Menten P, Struyf S, Schutyser E, Wuyts A, De Clercq E, Schols D, Proost P, Van Damme J: The LD78b isoform of MIP-1a is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J Clin Invest 1999, 104(4):R1-R5.
  • [16]Juffermans NP, Paxton WA, Dekkers PEP, Verbon A, de Jonge E, Speelman P, van Deventer SJH, van der Poll T: Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4+ T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines. Blood 2000, 96(8):2649-2654.
  • [17]Qiu L, Huang D, Chen CY, Wang R, Shen L, Shen Y, Hunt R, Estep J, Haynes BF, Jacobs WR, et al.: Severe tuberculosis induces unbalanced up-regulation of gene networks and over expression of IL-22, MIP-1a, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-g, TIM1, and TLR2 but low antigen-specific cellular responses. J Infect Dis 2008, 198(10):1514-1519.
  • [18]Pokkali S, Das SD: Augmented chemokine levels and chemokine receptor expression on immune cells during pulmonary tuberculosis. Hum Immunol 2009, 70(2):110-115.
  • [19]Vesosky B, Rottinghaus EK, Stromberg P, Turner J, Beamer G: CCL5 participates in early protection against Mycobacterium tuberculosis. J. Leukocyte Biol 2010, 87(6):1153-1165.
  • [20]Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, et al.: Genetic restriction of HIV-1 infection and progression to aids by a deletion allele of the CKR5 structural gene. Science 1996, 273(5283):1856-1862.
  • [21]Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996, 86(3):367-377.
  • [22]Blanpain CD, Lee B, Tackoen M, Puffer B, Boom A, Libert FDR, Sharron M, Wittamer VR, Vassart G, Doms RW, et al.: Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood 2000, 96(5):1638-1645.
  • [23]McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM: CCR5 promoter polymorphism and HIV-1 disease progression. The Lancet 1998, 352(9131):866-870.
  • [24]Mamtani M, Mummidi S, Ramsuran V, Pham M-H, Maldonado R, Begum K, Valera MS, Sanchez R, Castiblanco J, Kulkarni H, et al.: Influence of Variations in CCL3L1 and CCR5 on tuberculosis in a Northwestern Colombian population. J Infect Dis 2011, 203(11):1590-1594.
  • [25]Taype CA, Castro JC, Accinelli RA, Herrera-Velit P, Shaw MA, Espinoza JR: Association between SLC11A1 polymorphisms and susceptibility to different clinical forms of tuberculosis in the Peruvian population. Infect Genet Evol 2006, 6(5):361-367.
  • [26]Taype CA, Shamsuzzaman S, Accinelli RA, Espinoza JR, Shaw MA: Genetic susceptibility to different clinical forms of tuberculosis in the Peruvian population. Infect Genet Evol 2010, 10(4):495-504.
  • [27]Dissanayeke SR, Levin S, Pienaar S, Wood K, Eley B, Beatty D, Henderson H, Anderson S, Levin M: Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS ONE 2009, 4(8):e6698.
  • [28]Carpenter D, Walker S, Prescott N, Schalkwijk J, Armour J: Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders. BMC Genomics 2011, 12(1):418. BioMed Central Full Text
  • [29]Carpenter D, Rooth I, Armour JAL, Shaw MA: CCL3L1 copy number and susceptibility to malaria. Infect Genet Evol 2012, 12:1147-1154.
  • [30]Walker S, Janyakhantikul S, Armour JAL: multiplex paralogue ratio tests for accurate measurement of multiallelic CNVs. Genomics 2009, 93(1):98-103.
  • [31]Armour JAL, Palla R, Zeeuwen PLJM, den Heijer M, Schalkwijk J, Hollox EJ: Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats. Nucl Acids Res 2007, 35(3):e19.
  • [32]Quillent C, Oberlin E, Braun J, Rousset D, Gonzalez-Canali G, Métais P, Montagnier L, Virelizier J-L, Arenzana-Seisdedos F, Beretta A: HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet 1998, 351(9095):14-18.
  • [33]Kostrikis LG, Neumann AU, Thomson B, Korber BT, McHardy P, Karanicolas R, Deutsch L, Huang Y, Lew JF, McIntosh K, et al.: A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J Virol 1999, 73(12):10264-10271.
  • [34]Carrington M, Kissner T, Gerrard B, Ivanov S, O'Brien SJ, Dean M: Novel Alleles of the Chemokine-receptor gene CCR5. Am. J. Hum. Gen 1997, 61(6):1261-1267.
  • [35]Mummidi S, Bamshad M, Ahuja SS, Gonzalez E, Feuillet PM, Begum K, Galvis MC, Kostecki V, Valente AJ, Murthy KK, et al.: Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. J Biol Chem 2000, 275(25):18946-18961.
  • [36]Rao KR, Kauser F, Srinivas S, Zanetti S, Sechi LA, Ahmed N, Hasnain SE: Analysis of genomic downsizing on the basis of region-of-difference polymorphism profiling of mycobacterium tuberculosis patient isolates reveals geographic partitioning. J Clin Microbiol 2005, 43(12):5978-5982.
  • [37]Townson JR, Barcellos LF, Nibbs RJ: Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol 2002, 32(10):3016-3026.
  • [38]Carpenter D, McIntosh R, Pleass R, Armour JAL: Functional effects of CCL3L1 copy number. Genes Immun 2012, 13:374-379.
  • [39]Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, et al.: The [beta]-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996, 85(7):1135-1148.
  • [40]Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA: CC CKR5: A RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-Tropic HIV-1. Science 1996, 272(5270):1955-1958.
  • [41]Scott Algood HM, Flynn JL: CCR5-deficient mice control mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J Immunol 2004, 173(5):3287-3296.
  • [42]Sato N, Kuziel WA, Melby PC, Reddick RL, Kostecki V, Zhao W, Maeda N, Ahuja SK, Ahuja SS: Defects in the generation of IFN-g are overcome to control infection with leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1a, or CCR2-deficient mice. J Immunol 1999, 163(10):5519-5525.
  • [43]Scott Algood HM, Chan J, Flynn JL: Chemokines and tuberculosis. Growth Factor Rev 2003, 14(6):467-477.
  文献评价指标  
  下载次数:18次 浏览次数:16次