期刊论文详细信息
BMC Genomics
All-Food-Seq (AFS): a quantifiable screen for species in biological samples by deep DNA sequencing
Thomas Hankeln2  Rene Köppel3  Bertil Schmidt1  Anne Schäfer2  Mathias Weber2  Yongchao Liu1  Christopher Felix Krombholz2  Fabian Ripp2 
[1] Institute of Computer Science, Johannes Gutenberg University Mainz, D55099 Mainz, Germany;Institute of Molecular Genetics, Johannes Gutenberg University Mainz, D55099 Mainz, Germany;Official Food Control Authority of the Canton Zürich, Zürich, Switzerland
关键词: Metagenomics;    Species identification;    Real-time PCR;    Next-generation sequencing;    Illumina;   
Others  :  1216357
DOI  :  10.1186/1471-2164-15-639
 received in 2013-07-23, accepted in 2014-07-24,  发布年份 2014
PDF
【 摘 要 】

Background

DNA-based methods like PCR efficiently identify and quantify the taxon composition of complex biological materials, but are limited to detecting species targeted by the choice of the primer assay. We show here how untargeted deep sequencing of foodstuff total genomic DNA, followed by bioinformatic analysis of sequence reads, facilitates highly accurate identification of species from all kingdoms of life, at the same time enabling quantitative measurement of the main ingredients and detection of unanticipated food components.

Results

Sequence data simulation and real-case Illumina sequencing of DNA from reference sausages composed of mammalian (pig, cow, horse, sheep) and avian (chicken, turkey) species are able to quantify material correctly at the 1% discrimination level via a read counting approach. An additional metagenomic step facilitates identification of traces from animal, plant and microbial DNA including unexpected species, which is prospectively important for the detection of allergens and pathogens.

Conclusions

Our data suggest that deep sequencing of total genomic DNA from samples of heterogeneous taxon composition promises to be a valuable screening tool for reference species identification and quantification in biosurveillance applications like food testing, potentially alleviating some of the problems in taxon representation and quantification associated with targeted PCR-based approaches.

【 授权许可】

   
2014 Ripp et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630071115450.pdf 896KB PDF download
Figure 3. 31KB Image download
Figure 2. 92KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Das Eidgenössische Departement des Innern: Verordnung über Lebensmittel tierischer Herkunft. Swiss Food Legislation 2005, 23:11. Art. 8 Abs. 5
  • [2]Bundesministerium der Justiz und für Verbraucherschutz: Gesetz über den Verkehr von Arzneimitteln. German Drug Law 2011, 22:12. Art. 10 & 11
  • [3]Meyer R, Candrian U, Lüthy J: Detection of pork in heated meat products by the polymerase chain reaction. J AOAC Int 1994, 77(3):617-622.
  • [4]Woolfe M, Primrose S: Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotechnol 2004, 22(5):222-226.
  • [5]Asensio L, Gonzalez I, Garcia T, Martin R: Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 2008, 19(1):1-8.
  • [6]Brodmann PD, Moor D: Sensitive and semi-quantitative TaqMan™ real-time polymerase chain reaction systems for the detection of beef (Bos taurus) and the detection of the family Mammalia in food and feed. Meat Sci 2003, 65(1):599-607.
  • [7]Zhang CL, Scott NW, Lawson G, Slater A, Fowler: A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses. Food Control 2007, 18(9):1149-1158.
  • [8]Köppel R, Ruf J, Zimmerli F, Breitenmoser A: Multiplex real-time PCR for the detection and quantification of DNA from beef, pork, chicken and turkey. Eur Food Res Technol 2008, 227(4):1199-1203.
  • [9]Eugster A, Ruf J, Rentsch J, Koppel R: Quantification of beef, pork, chicken and turkey proportions in sausages: use of matrix-adapted standards and comparison of single versus multiplex PCR in an interlaboratory trial. Eur Food Res Technol 2009, 230(1):55-61.
  • [10]Sawyer J, Wood C, Shanahan D, Gout S, McDowell D: Real-time PCR for quantitative meat species testing. Food Control 2003, 14(8):579-583.
  • [11]Hebert PDN, Ratnasingham S, deWaard JR: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. P Roy Soc B-Biol Sci 2003, 270:96-99.
  • [12]Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, Bellgard MI, Bunce M: Deep Sequencing of Plant and Animal DNA Contained within Traditional Chinese Medicines Reveals Legality Issues and Health Safety Concerns. Plos Genet 2012, 8(4):436-446.
  • [13]Tillmar AO, Dell'Amico B, Welander J, Holmlund G: A Universal Method for Species Identification of Mammals Utilizing Next Generation Sequencing for the Analysis of DNA Mixtures. PLoS One 2013, 8(12):e83761.
  • [14]Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q: Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience 2013, 2(1):4.
  • [15]Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S: DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 2013, 11:222.
  • [16]Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN: Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? Mol Ecol Resour 2013, 13(4):620-633.
  • [17]Robin ED, Wong R: Mitochondrial-DNA Molecules and Virtual Number of Mitochondria Per Cell in Mammalian-Cells. J Cell Physiol 1988, 136(3):507-513.
  • [18]Marguerat S, Bahler J: RNA-seq: from technology to biology. Cell Mol Life Sci 2010, 67(4):569-579.
  • [19]Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011, 12(2):87-98.
  • [20]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.
  • [21]Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [22]Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Dunham I: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74.
  • [23]Wiedmann RT, Smith TPL, Nonneman DJ: SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genet 2008, 9:81.
  • [24]Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G: Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326(5954):865-867.
  • [25]Kerstens HHD, Crooijmans RPMA, Veenendaal A, Dibbits BW, Chin-A-Woeng TFC, den Dunnen JT, Groenen MAM: Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genomics 2009, 10:479.
  • [26]Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, McGrath A, Wilson P, Ingersoll RG, McCulloch R, McWilliam S, Tang D, McEwan J, Cockett N, Oddy VH, Nicholas FW, Raadsma H, International Sheep Genomics Consortium: A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One 2009, 4(3):e4668.
  • [27]Pop M, Salzberg SL: Bioinformatics challenges of new sequencing technology. Trends Genet 2008, 24(3):142-149.
  • [28]Li H, Homer N: A survey of sequence alignment algorithms for next-generation sequencing. Brief in Bioinform 2010, 11(5):473-483.
  • [29]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [30]Liu Y, Schmidt B, Maskell DL: CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 2012, 28(14):1830-1837.
  • [31]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [32]Williams RBH, Cotsapas CJ, Cowley MJ, Chan E, Nott DJ, Little PFR: Normalization procedures and detection of linkage signal in genetical-genomics experiments. Nat Genet 2006, 38(8):855-856.
  • [33]Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Le Blomberg A, Bouffard P, Burt DW, Crasta O, Crooijmans RPMA, Cooper K, Coulombe RA, De S, Delany ME, Dodgson JB, Dong JJ, Evans C, Frederickson KM, Flicek P, Florea L, Folkerts O, Groenen MA, Harkins TT, Herrero J, Hoffmann S, Megens HJ, Jiang A, de Jong P, Kaiser P, Kim H: Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 2010, 8(9):e1000475.
  • [34]Gregory TR: A bird's-eye view of the C-value enigma: Genome size, cell size, and metabolic rate in the class aves. Evolution 2002, 56(1):121-130.
  • [35]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [36]Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC: Integrative analysis of environmental sequences using MEGAN4. Genome Res 2011, 21(9):1552-1560.
  • [37]Köppel R, Ruf J, Rentsch J: Multiplex real-time PCR for the detection and quantification of DNA from beef, pork, horse and sheep. Eur Food Res Technol 2011, 232(1):151-155.
  • [38]Schnoes AM, Brown SD, Dodevski I, Babbitt PC: Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comp Biol 2009, 5(12):e1000605.
  • [39]Kijas JW, Menzies M, Ingham A: Sequence diversity and rates of molecular evolution between sheep and cattle genes. Anim Genet 2006, 37(2):171-174.
  • [40]Köppel R, Eugster A, Ruf J, Rentsch J: Quantification of meat proportions by measuring DNA contents in raw and boiled sausages using matrix-adapted calibrators and multiplex real-time PCR. J AOAC Int 2012, 95(2):494-499.
  • [41]Oakenfull EA, Clegg JB: Phylogenetic relationships within the genus Equus and the evolution of alpha and theta globin genes. J Mol Evol 1998, 47(6):772-783.
  • [42]Teletchea F, Bernillon J, Duffraisse M, Laudet V, Hanni C: Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 2008, 45(3):967-975.
  • [43]Plohl M, Luchetti A, Mestrović N, Mantovani B: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 2008, 409(1–2):72-82.
  • [44]Chiang YC, Tsen HY, Chen HY, Chang YH, Lin CK, Chen CY, Pai WY: Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples. J Microbiol Methods 2012, 88(1):110-116.
  • [45]Chen C-C, Hsia K-C, Huang C-T, Wong W-W, Yen M-Y, Li L-H, Lin K-Y, Chen K-W, Li S-Y: Draft genome sequence of a dominant, multidrug-resistant Neisseria gonorrhoeae strain, TCDC-NG08107, from a sexual group at high risk of acquiring human immunodeficiency virus infection and syphilis. Bacteriol 2011, 193(7):1788-1789.
  • [46]Schubert-Ullrich P, Rudolf J, Ansari P, Galler B, Führer M, Molinelli A, Baumgartner S: Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem 2009, 395(1):69-81.
  • [47]Adey A, Morrison HG, Xun X, Kitzman JO, Turner EH, Stackhouse B, MacKenzie AP, Caruccio NC, Zhang X, Shendure J, Asan: Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 2010, 11(12):R119.
  • [48]Mafra I, Ferreira I, Oliveira M: Food authentication by PCR-based methods. Eur Food Res Technol A 2008, 227(3):649-665.
  • [49]van Nieuwerburgh F, Soetaert S, Podshivalova K, Ay-Lin Wang E, Schaffer L, Deforce D, Salomon DR, Head SR, Ordoukhanian P: Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PloS One 2011, 6(10):e26969.
  • [50]Kircher M, Sawyer S, Meyer M: Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 2012, 40(1):e3.
  • [51]Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C: Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012, 9(8):811-814.
  • [52]Wood DE, Salzberg SL: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014, 15(3):R46.
  • [53]Francis OE, Bendall M, Manimaran S, Hong CJ, Clement NL, Castro-Nallar E, Snell Q, Schaalje GB, Clement MJ, Crandall KA, Johnason WE: Pathoscope: Species identification and strain attribution with unassembled sequencing data. Genome Res 2013, 23(10):1721-1729.
  文献评价指标  
  下载次数:14次 浏览次数:8次