期刊论文详细信息
BMC Evolutionary Biology
Molecular adaptation of telomere associated genes in mammals
Mary J O’Connell4  Emma C Teeling1  Charles Spillane2  Noeleen B Loughran5  Mark TA Donoghue6  Ann M Mc Cartney3  Claire C Morgan3 
[1]School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
[2]Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre, National University of Ireland Galway (NUIG), Aras de Brun C306, Galway, Ireland
[3]Centre for Scientific Computing & Complex Systems Modelling (SCI-SYM), Dublin City University, Glasnevin, Dublin 9, Ireland
[4]Current address: Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
[5]Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Canada
[6]Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
关键词: Longevity;    Senescence;    Telomere;    Mammal molecular evolution;    Positive selection;   
Others  :  1085092
DOI  :  10.1186/1471-2148-13-251
 received in 2013-09-02, accepted in 2013-11-06,  发布年份 2013
PDF
【 摘 要 】

Background

Placental mammals display a huge range of life history traits, including size, longevity, metabolic rate and germ line generation time. Although a number of general trends have been proposed between these traits, there are exceptions that warrant further investigation. Species such as naked mole rat, human and certain bat species all exhibit extreme longevity with respect to body size. It has long been established that telomeres and telomere maintenance have a clear role in ageing but it has not yet been established whether there is evidence for adaptation in telomere maintenance proteins that could account for increased longevity in these species.

Results

Here we carry out a molecular investigation of selective pressure variation, specifically focusing on telomere associated genes across placental mammals. In general we observe a large number of instances of positive selection acting on telomere genes. Although these signatures of selection overall are not significantly correlated with either longevity or body size we do identify positive selection in the microbat species Myotis lucifugus in functionally important regions of the telomere maintenance genes DKC1 and TERT, and in naked mole rat in the DNA repair gene BRCA1.

Conclusion

These results demonstrate the multifarious selective pressures acting across the mammal phylogeny driving lineage-specific adaptations of telomere associated genes. Our results show that regardless of the longevity of a species, these proteins have evolved under positive selection thereby removing increased longevity as the single selective force driving this rapid rate of evolution. However, evidence of molecular adaptations specific to naked mole rat and Myotis lucifugus highlight functionally significant regions in genes that may alter the way in which telomeres are regulated and maintained in these longer-lived species.

【 授权许可】

   
2013 Morgan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113170619720.pdf 1139KB PDF download
Figure 5. 88KB Image download
Figure 4. 65KB Image download
Figure 3. 88KB Image download
Figure 2. 75KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]de Magalhaes JP, Costa J, Church GM: An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 2007, 62(2):149-160.
  • [2]de Magalhaes JP, Costa J: A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 2009, 22(8):1770-1774.
  • [3]Austad SN: Diverse aging rates in metazoans: targets for functional genomics. Mech Ageing Dev 2005, 126(1):43-49.
  • [4]Buffenstein R: Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 2008, 178(4):439-445.
  • [5]Austad SN: Methusaleh’s Zoo: how nature provides us with clues for extending human health span. J Comp Pathol 2010, 142(Suppl 1):S10-S21.
  • [6]Medawar PB: An unsolved problem of biology. London: Lewis, H.K; 1952.
  • [7]Williams GC: Pleiotrophy, natural selection and the evolution of senescence. Evolution 1957, 11:398-411.
  • [8]Kirkwood TB: Evolution of ageing. Nature 1977, 270(5635):301-304.
  • [9]Kirkwood TB, Austad SN: Why do we age? Nature 2000, 408(6809):233-238.
  • [10]Austad SN, Fischer KE: Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J Gerontol 1991, 46(2):B47-B53.
  • [11]Bourke AFG: Kin selection and the evolutionary theory of aging. Annu Rev Ecol Evol Syst 2007, 38:103-128.
  • [12]Allman J, Rosin A, Kumar R, Hasenstaub A: Parenting and survival in anthropoid primates: caretakers live longer. Proc Natl Acad Sci USA 1998, 95(12):6866-6869.
  • [13]Partridge L: Evolutionary theories of ageing applied to long-lived organisms. Exp Gerontol 2001, 36(4–6):641-650.
  • [14]Blasco MA: Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005, 6(8):611-622.
  • [15]Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM: Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 1997, 94(14):7423-7428.
  • [16]Gomes NM, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR, Austad SN, Venditti C, Pagel M, Shay JW, et al.: Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 2011, 10(5):761-768.
  • [17]Bekaert S, De Meyer T, Van Oostveldt P: Telomere attrition as ageing biomarker. Anticancer Res 2005, 25(4):3011-3021.
  • [18]Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, et al.: Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 2000, 26(1):85-88.
  • [19]Bessler M, Wilson DB, Mason PJ: Dyskeratosis congenita and telomerase. Curr Opin Pediatr 2004, 16(1):23-28.
  • [20]Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA: Essential role of limiting telomeres in the pathogenesis of werner syndrome. Nat Genet 2004, 36(8):877-882.
  • [21]Levasseur A, Gouret P, Lesage-Meessen L, Asther M, Record E, Pontarotti P: Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase a family. BMC Evol Biol 2006, 6:92. BioMed Central Full Text
  • [22]Tennessen JA: Positive selection drives a correlation between non-synonymous/synonymous divergence and functional divergence. Bioinformatics 2008, 24(12):1421-1425.
  • [23]Moury B, Simon V: dN/dS-based methods detect positive selection linked to trade-offs between different fitness traits in the coat protein of potato virus Y. Mol Biol Evol 2011, 28(9):2707-2717.
  • [24]Loughran NB, Hinde S, McCormick-Hill S, Leidal KG, Bloomberg S, Loughran ST, O’Connor B, O’Fagain C, Nauseef WM, O’Connell MJ: Functional consequence of positive selection revealed through rational mutagenesis of human myeloperoxidase. Mol Biol Evol 2012, 29(8):2039-2046.
  • [25]Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six mammalian genomes. PLoS Genet 2008, 4(8):e1000144.
  • [26]Hughes AL: Adaptive evolution of genes and genomes. New York: Oxford University Press; 1999.
  • [27]Kim SY, Pritchard JK: Adaptive evolution of conserved noncoding elements in mammals. PLoS Genet 2007, 3(9):1572-1586.
  • [28]Morgan CC, Loughran NB, Walsh TA, Harrison AJ, O’Connell MJ: Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC Evol Biol 2010, 10:39. BioMed Central Full Text
  • [29]Rennison DJ, Owens GL, Taylor JS: Opsin gene duplication and divergence in ray-finned fish. Mol phylogenet Evol 2012, 62(3):986-1008.
  • [30]Ohno S: Evolution by gene duplication. New York: Springer; 1970.
  • [31]Muller HJ: Genetics. 1935, 17:237-252.
  • [32]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-1155.
  • [33]Anderson JB, Kohn LM: Genotyping, gene genealogies and genomics bring fungal population genetics above ground. Trends Ecol Evol 1998, 13(11):444-449.
  • [34]Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NP, Enright MC, Goldstein R, Hood DW, Kalia A, Moore CE, et al.: Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 2001, 98(1):182-187.
  • [35]Posada D, Crandall KA: Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 2001, 98(24):13757-13762.
  • [36]Marais G, Mouchiroud D, Duret L: Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 2001, 98(10):5688-5692.
  • [37]Lynch M: The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 2007, 8(10):803-813.
  • [38]Loytynoja A, Goldman N: Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 2008, 320(5883):1632-1635.
  • [39]Muller J, Creevey CJ, Thompson JD, Arendt D, Bork P: AQUA: automated quality improvement for multiple sequence alignments. Bioinformatics 2010, 26(2):263-265.
  • [40]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
  • [41]Thompson JD, Plewniak F, Ripp R, Thierry JC, Poch O: Towards a reliable objective function for multiple sequence alignments. J Mol Biol 2001, 314(4):937-951.
  • [42]Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997, 13(5):555-556.
  • [43]Yang Z, Nielsen R, Hasegawa M: Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol 1998, 15(12):1600-1611.
  • [44]Forsberg R, Christiansen FB: A codon-based model of host-specific selection in parasites, with an application to the influenza a virus. Mol Biol Evol 2003, 20(8):1252-1259.
  • [45]Bielawski JP, Yang Z: A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 2004, 59(1):121-132.
  • [46]Weadick CJ, Chang BS: An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 2012, 29(5):1297-1300.
  • [47]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995, Series B(57):289-300.
  • [48]Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol biol Evol 2005, 22(12):2472-2479.
  • [49]Friedman R, Hughes AL: Likelihood-ratio tests for positive selection of human and mouse duplicate genes reveal nonconservative and anomalous properties of widely used methods. Mol phylogenet Evol 2007, 42(2):388-393.
  • [50]Zhai W, Nielsen R, Goldman N, Yang Z: Looking for Darwin in genomic sequences — validity and success of statistical methods. Mol Biol Evol 2012, 29(10):2889-93.
  • [51]Gharib WH, Robinson-Rechavi M: The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol Biol Evol 2013, 30(7):1675-1686.
  • [52]Anisimova M, Nielsen R, Yang Z: Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 2003, 164(3):1229-1236.
  • [53]Posada D: Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 2002, 19(5):708-717.
  • [54]Orsi RH, Ripoll DR, Yeung M, Nightingale KK, Wiedmann M: Recombination and positive selection contribute to evolution of listeria monocytogenes inlA. Microbiology 2007, 153(Pt 8):2666-2678.
  • [55]Lartillot N: Phylogenetic patterns of GC-biased gene conversion in placental mammals, and the evolutionary dynamics of recombination landscapes. Mol Biol Evol 2013, 30(3):489-502.
  • [56]French JD, Dunn J, Smart CE, Manning N, Brown MA: Disruption of BRCA1 function results in telomere lengthening and increased anaphase bridge formation in immortalized cell lines. Genes Chromosomes Cancer 2006, 45(3):277-289.
  • [57]Campbell SJ, Edwards RA, Glover JN: Comparison of the structures and peptide binding specificities of the BRCT domains of MDC1 and BRCA1. Structure 2010, 18(2):167-176.
  • [58]Mitchell JR, Wood E, Collins K: A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999, 402(6761):551-555.
  • [59]Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I: X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998, 19(1):32-38.
  • [60]Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, et al.: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013, 339(6118):456-460.
  • [61]Kraemer DM, Goebeler M: Missense mutation in a patient with X-linked dyskeratosis congenita. Haematologica 2003, 88(4):ECR11.
  • [62]Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I: The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001, 413(6854):432-435.
  • [63]Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V, Bass MB, Robinson MO: Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997, 11(23):3109-3115.
  • [64]Wyatt HD, Lobb DA, Beattie TL: Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol 2007, 27(8):3226-3240.
  • [65]Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4(3):e72.
  • [66]Cheng F, Chen W, Richards E, Deng L, Zeng C: SNP@Evolution: a hierarchical database of positive selection on the human genome. BMC Evol Biol 2009, 9:221. BioMed Central Full Text
  • [67]Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, et al.: The spectrum of WRN mutations in werner syndrome patients. Hum Mutat 2006, 27(6):558-567.
  • [68]Chen FC, Vallender EJ, Wang H, Tzeng CS, Li WH: Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J Heredity 2001, 92(6):481-489.
  • [69]Galtier N, Duret L: Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet: TIG 2007, 23(6):273-277.
  • [70]Hughes AL, Friedman R: Recent mammalian gene duplications: robust search for functionally divergent gene pairs. J Mol Evol 2004, 59(1):114-120.
  • [71]O’Riain MJ, Jarvis JU, Alexander R, Buffenstein R, Peeters C: Morphological castes in a vertebrate. Proc Natl Acad Sci USA 2000, 97(24):13194-13197.
  • [72]Brunet-Rossinni AK, Austad SN: Ageing studies on bats: a review. Biogerontology 2004, 5(4):211-222.
  • [73]Morgan CC, Shakya K, Webb A, Walsh TA, Lynch M, Loscher CE, Ruskin HJ, O’Connell MJ: Colon cancer associated genes exhibit signatures of positive selection at functionally significant positions. BMC Evol Biol 2012, 12:114. BioMed Central Full Text
  • [74]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, et al.: Ensembl 2012. Nucleic Acids Res 2012, 40(Database issue):D84-D90.
  • [75]Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, et al.: Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011, 479(7372):223-227.
  • [76]Darling A, Carey L, Feng W: The design, implementation, and evaluation of mpiBLAST. 4th International Conference on Linux Clusters: The HPC Revolution 2003 in conjunction with ClusterWorld Conference & Expo. 2003.
  • [77]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
  • [78]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Bmc Bioinformatics 2004, 5:113. BioMed Central Full Text
  • [79]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9(4):286-298.
  • [80]Thompson JD, Thierry JC, Poch O: RASCAL: rapid scanning and correction of multiple sequence alignments. Bioinformatics 2003, 19(9):1155-1161.
  • [81]Chakrabarti S, Lanczycki CJ, Panchenko AR, Przytycka TM, Thiessen PA, Bryant SH: Refining multiple sequence alignments with conserved core regions. Nucleic Acids Res 2006, 34(9):2598-2606.
  • [82]Rambaut A: Se-AL Sequence alignment editor. Oxford: Software package; 1996.
  • [83]Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO: Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 2006, 6:29. BioMed Central Full Text
  • [84]Huelsenbeck JP, Ronquist F: MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [85]Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TL, Stadler T, et al.: Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 2011, 334(6055):521-524.
  • [86]Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O’Connell MJ: Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol 2013, 30(9):2145-56.
  • [87]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17(12):1246-1247.
  • [88]Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002, 18(3):502-504.
  • [89]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17(1):32-43.
  • [90]Ihaka R, Gentleman R: A language for data analysis and graphics. J Comput Graph Stat 1996, 5:229-314.
  • [91]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26(19):2462-2463.
  • [92]Martin D, Rybicki E: RDP: detection of recombination amongst aligned sequences. Bioinformatics 2000, 16(6):562-563.
  • [93]Padidam M, Sawyer S, Fauquet CM: Possible emergence of new geminiviruses by frequent recombination. Virology 1999, 265(2):218-225.
  • [94]Smith JM: Analyzing the mosaic structure of genes. J Mol Evol 1992, 34(2):126-129.
  • [95]Gibbs MJ, Armstrong JS, Gibbs AJ: Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 2000, 16(7):573-582.
  • [96]Boni MF, Posada D, Feldman MW: An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 2007, 176(2):1035-1047.
  • [97]Weiller GF: Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol 1998, 15(3):326-335.
  文献评价指标  
  下载次数:0次 浏览次数:10次