期刊论文详细信息
BMC Infectious Diseases
Detection of P. aeruginosaharboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital
Mara CL Nogueira4  Margarete TG de Almeida4  Mauricio L Nogueira1  Fernando G Rúbio4  Maria Gabriela de Lucca Oliveira3  Tiago Casella2  Milena Polotto2 
[1] Laboratório de Pesquisa em Virologia. Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil;Programa de Pós Graduação em Microbiologia, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Campus de São José do Rio Preto, Brazil;Laboratório Central do Hospital de Base de São José do Rio Preto, São José do Rio Preto, SP, Brazil;Laboratório de Microbiologia. Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
关键词: SPM-1;    IMP-1;    GES-5;    GES-1;    CTX-M-2;    MBL;    ESBL;    Nosocomial infection;    P. aeruginosa;   
Others  :  1175315
DOI  :  10.1186/1471-2334-12-176
 received in 2012-03-13, accepted in 2012-07-24,  发布年份 2012
PDF
【 摘 要 】

Background

Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as production of metallo-beta-lactamase (MBLs) and extended-spectrum beta-lactamases (ESBLs) have the highest clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital.

Methods

Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic similarity evaluation.

Results

Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1) were detected in only 26.7% of isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene (19.6%), followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by double-disc synergy test (DDST), the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with blaIMP-1.

Conclusions

In this study MBLs production was not the major mechanism of resistance to carbapenems, suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other beta-lactamases. The detection of blaCTX-M-2,blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among antimicrobial resistant P. aeruginosa and the extraordinary ability presented by this pathogen to acquire multiple resistance mechanisms. These findings raise the concern about the future of antimicrobial therapy and the capability of clinical laboratories to detect resistant strains, since simultaneous production of MBLs and ESBLs is known to promote further complexity in phenotypic detection. Occurrence of intra-hospital clonal dissemination enhances the necessity of better observance of infection control practices.

【 授权许可】

   
2012 Polotto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150428024632231.pdf 1014KB PDF download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Slama TG: Gram-negative antibiotic resistance: there is a price to pay. Crit Care 2008, 12(4):1-7. BioMed Central Full Text
  • [2]Lister PD, Wolter DJ, Hanson ND: Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009, 22(4):582-610.
  • [3]Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F: Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007, 13(6):560-578.
  • [4]Nordmann P, Naas T, Fortineau N, Poirel L: Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr Opin Microbiol 2007, 10(5):436-440.
  • [5]Strateva T, Yordanov D: Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009, 58(9):1133-1148.
  • [6]Tam VH, Rogers CA, Chang KT, Weston JS, Caeiro JP, Garey KW: Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 2010, 54(9):3717-3722.
  • [7]Glupczynski Y, Bogaerts P, Deplano A, Berhin C, Huang TD, Van Eldere J, Rodriguez-Villalobos H: Detection and characterization of class A extended-spectrum-beta-lactamase-producing Pseudomonas aeruginosa isolates in Belgian hospitals. J Antimicrob Chemother 2010, 65(5):866-871.
  • [8]Lin SP, Liu MF, Lin CF, Shi ZY: Phenotypic detection and polymerase chain reaction screening of extended-spectrum β-lactamases produced by Pseudomonas aeruginosa isolates. J Microbiol Immunol Infect 2012, 45(3):200-207. [Epub ahead of print]
  • [9]Bush K: New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 2001, 32(7):1085-1089.
  • [10]Zhao WH, Hu ZQ: Beta-lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit Rev Microbiol 2010, 36(3):245-258.
  • [11]Shu JC, Chia JH, Siu LK, Kuo AJ, Huang SH, Su LH, Wu TL: Interplay between mutational and horizontally acquired resistance mechanisms and its association with carbapenem resistance amongst extensively drug-resistant Pseudomonas aeruginosa (XDR-PA). Int J Antimicrob Agents 2012, 39(3):217-222.
  • [12]Weldhagen GF, Poirel L, Nordmann P: Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother 2003, 47(8):2385-2392.
  • [13]Poirel L, Docquier JD, De Luca F, Verlinde A, Ide L, Rossolini GM, Nordmann P: BEL-2, an extended-spectrum beta-lactamase with increased activity toward expanded-spectrum cephalosporins in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010, 54(1):533-535.
  • [14]Tian GB, Adams-Haduch JM, Bogdanovich T, Wang HN, Doi Y: PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2011, 55(6):2710-2713.
  • [15]Picão RC, Poirel L, Gales AC, Nordmann P: Diversity of beta-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob Agents Chemother 2009, 53(9):3908-3913.
  • [16]Zhao WH, Chen G, Ito R, Hu ZQ: Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2009, 58(8):1080-1085.
  • [17]Picão RC, Andrade SS, Nicoletti AG, Campana EH, Moraes GC, Mendes RE, Gales AC: Metallo-β-Lactamase Detection: Comparative Evaluation of Double-Disk Synergy versus Combined Disk Tests for IMP-, GIM-, SIM- SPM-, or VIM-Producing Isolates. J Clin Microbiol 2008, 46(6):2028-2037.
  • [18]Tenover FC: Potential impact of rapid diagnostic tests on improiving antimicrobial uses. Ann NY Acad Sci 2010, 1213:70-80. [Epub ahead of print]
  • [19]Endimiani A, Hujer KM, Hujer AM, Kurz S, Jacobs MR, Perlin DS, Bonomo RA: Are we ready for novel detection methods to treat respiratory pathogens in hospital-acquired pneumonia? Clin Infect Dis 2011, 52(S4):S373-S383.
  • [20]: Performance standards for antimicrobial susceptibility testing. 19th informational supplement, M100-S19. Wayne, PA: Clinical and Laboratory Standards Institute; 2009.
  • [21]Tollentino FM, Polotto M, Nogueira ML, Lincopan N, Neves P, Mamizuka EM, Remeli GA, De Almeida MT, Rúbio FG, Nogueira MC: High Prevalence of blaCTX-M Extended Spectrum Beta-Lactamase Genes in Klebsiella pneumoniae Isolates from a Tertiary Care Hospital: First report of blaSHV-12, blaSHV-31, blaSHV-38, and blaCTX-M-15 in Brazil. Microb Drug Resist 2011, 17(1):7-16.
  • [22]Yan JJ, Hsueh P, Ko W, Luh W, Tsai S, Wu HM, Wu JJ: Metallo-β-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother 2001, 45(8):2224-2228.
  • [23]Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC: Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001, 45(4):1151-1161.
  • [24]Poirel L, Naas T, Delphine N, Collet L, Bellais S, Cavallo JD, Nordmann P: Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-β-Lactamase and Its Plasmid- and Integron-Born Gene from a Pseudomonas aeruginosa Clinical Isolate in France. Antimicrob Agents Chemother 2000, 44(4):891-897.
  • [25]Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL: Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005, 43(7):3129-3135.
  • [26]Sambrook J, Russel DW: Purification of PCR products in preparation for cloning. In Molecular Cloning: a Laboratory Manual. 3rd edition. New York: Cold Spring Harbor Laboratory Press; 2001:8.25-8.26.
  • [27]Silbert S, Pfaller MA, Hollis RJ, Barth AL, Sader HS: Evaluation of three molecular typing techniques for nonfermentative Gram-negative bacilli. Infect Control Hosp Epidemiol 2004, 25(10):847-851.
  • [28]Tsutsui A, Suzuki S, Yamane K, Matsui M, Konda T, Marui E, Takahashi K, Arakawa Y: Genotypes and infection sites in an outbreak of multidrug-resistant Pseudomonas aeruginosa. J Hosp Infect 2011, 78(4):317-322.
  • [29]Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B: Interpreting Chromosomal DNA Restriction Patterns Produced By Pulsed-Field Gel Electrophoresis: Criteria For Bacterial Strain Typing. J Clin Microbiol 1995, 33(9):2233-2239.
  • [30]Lagatolla C, Tonin EA, Monti-Bragadin C, Dolzani L, Gombac F, Bearzi C, Edalucci E, Gionechetti F, Rossolini GM: Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital. Emerg Infect Dis 2004, 10(3):535-538.
  • [31]Paterson DL, Bonomo RA: Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005, 18(4):657-686.
  • [32]Maltezou HC: Metallo-β-Lactamase in Gram-negative bacteria: introducing the era of pan-resistence? Int J Antimicrob Agents 2008, 33(5):405-407.
  • [33]Moet GJ, Jones RN, Biedenbach DJ, Stilwell MG, Fritsche TR: Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: report from the SENTRY Antimicrobial Surveillance Program (1998–2004). Diagn Microbiol Infect Dis 2007, 57(1):7-13.
  • [34]van der Heijden IM, Levin AS, De Pedri EH, Fung L, Rossi F, Duboc G, Barone AA, Costa SF: Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. aeruginosa to polymyxins. Ann Clin Microbiol Antimicrob 2007, 6:8. BioMed Central Full Text
  • [35]Marra AR, Pereira CA, Gales AC, Menezes LC, Cal RG, De Souza JM, Edmond MB, Faro C, Wey SB: Bloodstream infections with metallo-beta-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology and clinical outcomes. Antimicrob Agents Chemother 2006, 50(1):388-390.
  • [36]Franco MR, Caiaffa-Filho HH, Burattini MN, Rossi F: Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics 2010, 65(9):825-829.
  • [37]Cornaglia G, Giamarellou H, Rossolini GM: Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 2011, 11(5):381-393.
  • [38]Gales AC, Menezes LC, Silbert S, Sader HS: Dissemination in distinct Brazilian regions of an epidemic carbapanem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J Antimicrob Chemother 2003, 52(4):699-702.
  • [39]Sader HS, Reis AO, Silbert S, Gales AC: IMPs, VIMs and SPMs: the diversity of metallo-beta-lactamases produced by Pseudomonas aeruginosa. Clin Microbiol Infect 2005, 11(1):73-76.
  • [40]Martins AF, Zavascki AP, Gaspareto PB, Barth AL: Dissemination of Pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallo-beta-lactamases in hospitals from southern Brazil. Infection 2007, 35(6):457-460.
  • [41]Poirel L, Magalhaes M, Lopes M, Nordmann P: Molecular analysis of metallo-ß-lactamase gene blaSPM-1 surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob Agents Chemother 2004, 48(4):1406-1409.
  • [42]Salabi AE, Toleman MA, Weeks J, Bruderer T, Frei R, Walsh TR: First report of the metallo-beta-lactamase SPM-1 in Europe. Antimicrob Agents Chemother 2010, 54(1):582.
  • [43]Silva FM, Carmo MS, Silbert S, Gales AC: SPM-1-producing Pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microb Drug Resist 2011, 17(2):215-220.
  • [44]Livermore DM: Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare. Clin Infect Dis 2002, 34(5):634-640.
  • [45]Walsh TR, Toleman MA, Poirel L, Nordmann P: Metallo-β-Lactamases: the Quiet before the Storm. Clin Microb Rev 2005, 18(2):306-325.
  • [46]Walsh TR: Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 2010, 36(3):8-14.
  • [47]Docquier JD, Luzzaro F, Amicosante G, Toniolo A, Rossolini GM: Multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum serine-beta-lactamase and VIM-2 metallo-beta-lactamase. Emerg Infect Dis 2001, 7(5):910-911.
  • [48]Woodford N, Zhang J, Kaufmann ME, Yarde S, Tomas Mdel M, Faris C, Vardhan MS, Dawson S, Cotterill SL, Livermore DM: Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. J Antimicrob Chemother 2008, 62(6):1265-1268.
  • [49]Mansour W, Dahmen S, Poirel L, Charfi K, Bettaieb D, Boujaafar N, Bouallegue O: Emergence of SHV-2a extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in a university hospital in Tunisia. Microb Drug Resist 2009, 15(4):295-301.
  • [50]Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P: Genetic structures at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother 2008, 52(4):1257-1263.
  • [51]Picão RC, Poirel L, Gales AC, Nordmann P: Further identification of CTX-M-2 extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009, 53(5):2225-2226.
  • [52]Labuschagne Cde J, Weldhagen GF, Ehlers MM, Dove MG: Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. Int J Antimicrob Agents 2008, 31(6):527-530.
  文献评价指标  
  下载次数:8次 浏览次数:15次