期刊论文详细信息
BMC Evolutionary Biology
Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages
Long Yu1  Jun Xie1  Weijin Xu1  Xianmei Yang1  Fang Chen1  Lihuan Cao1 
[1] State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
关键词: Cyclin;    CDK;    Metazoan emergence;    Evolution;    Cell cycle;   
Others  :  858101
DOI  :  10.1186/1471-2148-14-10
 received in 2013-07-03, accepted in 2014-01-02,  发布年份 2014
PDF
【 摘 要 】

Background

The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives.

Results

Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica.

Conclusions

Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence.

【 授权许可】

   
2014 Cao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723093106780.pdf 2271KB PDF download
118KB Image download
226KB Image download
250KB Image download
149KB Image download
204KB Image download
181KB Image download
201KB Image download
【 图 表 】

【 参考文献 】
  • [1]Pines J: Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J 1995, 308(Pt 3):697-711.
  • [2]Nigg EA: Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 1995, 17(6):471-480.
  • [3]Pines J: Cyclins and their associated cyclin-dependent kinases in the human cell cycle. Biochem Soc Trans 1993, 21(4):921-925.
  • [4]Hershko A: Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol 1997, 9(6):788-799.
  • [5]Morgan DO: Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997, 13:261-291.
  • [6]Malumbres M: Physiological relevance of cell cycle kinases. Physiol Rev 2011, 91(3):973-1007.
  • [7]Knoll AH, Carroll SB: Early animal evolution: emerging views from comparative biology and geology. Science 1999, 284(5423):2129-2137.
  • [8]Rokas A: The molecular origins of multicellular transitions. Curr Opin Genet Dev 2008, 18(6):472-478.
  • [9]Rokas A: The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 2008, 42:235-251.
  • [10]Ruiz-Trillo I, Burger G, Holland PW, King N, Lang BF, Roger AJ, Gray MW: The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 2007, 23(3):113-118.
  • [11]Sebe-Pedros A, Roger AJ, Lang FB, King N, Ruiz-Trillo I: Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 2010, 107(22):10142-10147.
  • [12]Degnan BM, Vervoort M, Larroux C, Richards GS: Early evolution of metazoan transcription factors. Curr Opin Genet Dev 2009, 19(6):591-599.
  • [13]Sebe-Pedros A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I: Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2011, 28(3):1241-1254.
  • [14]Ferrier DE, Holland PW: Ancient origin of the Hox gene cluster. Nat Rev Genet 2001, 2(1):33-38.
  • [15]Garcia-Fernandez J: The genesis and evolution of homeobox gene clusters. Nat Rev Genet 2005, 6(12):881-892.
  • [16]Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N: Premetazoan ancestry of the Myc-Max network. Mol Biol Evol 2011, 28(10):2961-2971.
  • [17]Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, et al.: Unexpected complexity of the Wnt gene family in a sea anemone. Nature 2005, 433(7022):156-160.
  • [18]Zhao ZM, Reynolds AB, Gaucher EA: The evolutionary history of the catenin gene family during metazoan evolution. BMC Evol Biol 2011, 11:198. BioMed Central Full Text
  • [19]King N, Carroll SB: A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 2001, 98(26):15032-15037.
  • [20]Pincus D, Letunic I, Bork P, Lim WA: Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci U S A 2008, 105(28):9680-9684.
  • [21]Cai X: Unicellular Ca2+ signaling ‘toolkit’ at the origin of metazoa. Mol Biol Evol 2008, 25(7):1357-1361.
  • [22]Abedin M, King N: The premetazoan ancestry of cadherins. Science 2008, 319(5865):946-948.
  • [23]Hulpiau P, van Roy F: New insights into the evolution of metazoan cadherins. Mol Biol Evol 2011, 28(1):647-657.
  • [24]Fahey B, Degnan BM: Origin and evolution of laminin gene family diversity. Mol Biol Evol 2012, 29(7):1823-1836.
  • [25]Nichols SA, Dirks W, Pearse JS, King N: Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci U S A 2006, 103(33):12451-12456.
  • [26]Abedin M, King N: Diverse evolutionary paths to cell adhesion. Trends Cell Biol 2010, 20(12):734-742.
  • [27]Hynes RO: The evolution of metazoan extracellular matrix. J Cell Biol 2012, 196(6):671-679.
  • [28]Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, et al.: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466(7307):720-726.
  • [29]Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ: The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2010, 2(6):a001198.
  • [30]Cao L, Peng B, Yao L, Zhang X, Sun K, Yang X, Yu L: The ancient function of RB-E2F pathway: insights from its evolutionary history. Biol Direct 2010, 5:55. BioMed Central Full Text
  • [31]Harashima H, Dissmeyer N, Schnittger A: Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 2013, 23(7):345-356.
  • [32]Novak B, Csikasz-Nagy A, Gyorffy B, Nasmyth K, Tyson JJ: Model scenarios for evolution of the eukaryotic cell cycle. Philos Trans R Soc Lond B Biol Sci 1998, 353(1378):2063-2076.
  • [33]Cross FR, Buchler NE, Skotheim JM: Evolution of networks and sequences in eukaryotic cell cycle control. Philos Trans R Soc Lond B Biol Sci 2011, 366(1584):3532-3544.
  • [34]Krylov DM, Nasmyth K, Koonin EV: Evolution of eukaryotic cell cycle regulation: stepwise addition of regulatory kinases and late advent of the CDKs. Curr Biol 2003, 13(2):173-177.
  • [35]Malumbres M, Barbacid M: Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005, 30(11):630-641.
  • [36]Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH, Wolgemuth DJ: Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009, 11(11):1275-1276.
  • [37]Doonan JH, Kitsios G: Functional evolution of cyclin-dependent kinases. Mol Biotechnol 2009, 42(1):14-29.
  • [38]Liu J, Kipreos ET: Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa. Mol Biol Evol 2000, 17(7):1061-1074.
  • [39]Guo Z, Stiller JW: Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 2004, 5:69. BioMed Central Full Text
  • [40]Gunbin KV, Suslov V, Turnaev II, Afonnikov DA, Kolchanov NA: Molecular evolution of cyclin proteins in animals and fungi. BMC Evol Biol 2011, 11:224. BioMed Central Full Text
  • [41]Ma Z, Wu Y, Jin J, Yan J, Kuang S, Zhou M, Zhang Y, Guo AY: Phylogenetic analysis reveals the evolution and diversification of cyclins in eukaryotes. Mol Phylogenet Evol 2013, 66(3):1002-1010.
  • [42]King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, et al.: The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 2008, 451(7180):783-788.
  • [43]Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, et al.: The Trichoplax genome and the nature of placozoans. Nature 2008, 454(7207):955-960.
  • [44]Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al.: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317(5834):86-94.
  • [45]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [46]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39(Web Server issue):W29-W37.
  • [47]Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, et al.: The Pfam protein families database. Nucleic Acids Res 2008, 36(Database issue):D281-D288.
  • [48]Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 2006, 34(Database issue):D257-D260.
  • [49]Liu Y, Schmidt B, Maskell D: MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 2010, 26(16):1958-1964.
  • [50]Pei J, Grishin NV: PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 2007, 23(7):802-808.
  • [51]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27(8):1164-1165.
  • [52]Pfeiffer W, Stamatakis A: Hybrid MPI/Pthreads Parallelization of the RAxML Phylogenetics Code. Atlanta: Ninth IEEE International Workshop on High Performance Computational Biology (HiCOMB 2010); 2010.
  • [53]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. New Orleans, LA: Proceedings of the Gateway Computing Environments Workshop (GCE); 2010:1-8.
  • [54]Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25(17):2286-2288.
  • [55]Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinforma 2007, 8:460. BioMed Central Full Text
  • [56]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23(2):254-267.
  • [57]Kristensen DM, Wolf YI, Mushegian AR, Koonin EV: Computational methods for gene orthology inference. Brief Bioinform 2011, 12(5):379-391.
  • [58]Tatusov RL: A genomic perspective on protein families. Science 1997, 278:631-637.
  • [59]Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y: Predicting function: from genes to genomes and back. J Mol Biol 1998, 283:707-725.
  • [60]Schlacht A, Mowbrey K, Elias M, Kahn RA, Dacks JB: Ancient complexity, opisthokont plasticity, and discovery of the 11th subfamily of Arf GAP proteins. Traffic 2013, 14(6):636-649.
  • [61]Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, et al.: The genome of the social amoeba Dictyostelium discoideum. Nature 2005, 435(7038):43-57.
  • [62]Torruella G, Derelle R, Paps J, Lang BF, Roger AJ, Shalchian-Tabrizi K, Ruiz-Trillo I: Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 2012, 29(2):531-544.
  • [63]Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9(3):153-166.
  • [64]Garriga J, Grana X: Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 2004, 337:15-23.
  • [65]Kasten M, Giordano A: Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene 2001, 20(15):1832-1838.
  • [66]Zhang J, Cicero SA, Wang L, Romito-Digiacomo RR, Yang Y, Herrup K: Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci U S A 2008, 105(25):8772-8777.
  • [67]Bloom J, Cross FR: Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 2007, 8(2):149-160.
  • [68]Soni R, Carmichael JP, Shah ZH, Murray JA: A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 1995, 7(1):85-103.
  • [69]Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H: Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 2004, 135(2):1084-1099.
  • [70]Morgan DO: The Cell Cycle: Principles of Control. London, UK: New Science Press; 2007.
  • [71]Peeper DS, Parker LL, Ewen ME, Toebes M, Hall FL, Xu M, Zantema A, van der Eb AJ, Piwnica-Worms H: A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J 1993, 12(5):1947-1954.
  • [72]Loog M, Morgan DO: Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 2005, 434(7029):104-108.
  • [73]Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ: Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993, 7(3):331-342.
  • [74]Trunnell NB, Poon AC, Kim SY, Ferrell JE Jr: Ultrasensitivity in the Regulation of Cdc25C by Cdk1. Mol Cell 2011, 41(3):263-274.
  • [75]Watanabe N, Arai H, Nishihara Y, Taniguchi M, Hunter T, Osada H: M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 2004, 101(13):4419-4424.
  • [76]Day PJ, Cleasby A, Tickle IJ, O’Reilly M, Coyle JE, Holding FP, McMenamin RL, Yon J, Chopra R, Lengauer C, et al.: Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci U S A 2009, 106(11):4166-4170.
  • [77]Takaki T, Echalier A, Brown NR, Hunt T, Endicott JA, Noble ME: The structure of CDK4/cyclin D3 has implications for models of CDK activation. Proc Natl Acad Sci U S A 2009, 106(11):4171-4176.
  • [78]de Bruin RA, McDonald WH, Kalashnikova TI, Yates J, Wittenberg C: Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 2004, 117:887-898.
  • [79]Stein GS, van Wijnen AJ, Stein JL, Lian JB, Montecino M, et al.: An architectural perspective of cell-cycle control at the G1/S phase cell-cycle transition. J Cell Physiol 2006, 209:706-710.
  • [80]Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS: Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 2006, 209(3):883-893.
  • [81]Becker KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS: Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells. J Cell Physiol 2007, 210(2):517-526.
  • [82]Pardee AB: A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 1974, 71(4):1286-1290.
  • [83]Pardee AB: G1 events and regulation of cell proliferation. Science 1989, 246(4930):603-608.
  • [84]Fisher DL, Nurse P: A single fission yeast mitotic cyclin B-p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 1996, 15(4):850-860.
  • [85]Sherr CJ, Roberts JM: Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004, 18(22):2699-2711.
  • [86]Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA: Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995, 82(4):621-630.
  • [87]Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C: Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 1995, 9(19):2364-2372.
  • [88]Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, et al.: Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 1996, 384(6608):470-474.
  • [89]Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME: Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 1999, 126(9):1927-1935.
  • [90]Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H, et al.: Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003, 4(6):451-461.
  • [91]Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H, Sicinski P: Development of mice expressing a single D-type cyclin. Genes Dev 2002, 16(24):3277-3289.
  • [92]Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, et al.: Mouse development and cell proliferation in the absence of D-cyclins. Cell 2004, 118(4):477-491.
  • [93]Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H: Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 1999, 19(10):7011-7019.
  • [94]Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M: Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 1999, 22(1):44-52.
  • [95]Moons DS, Jirawatnotai S, Parlow AF, Gibori G, Kineman RD, Kiyokawa H: Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology 2002, 143(8):3001-3008.
  • [96]Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M: Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004, 118(4):493-504.
  文献评价指标  
  下载次数:0次 浏览次数:6次