期刊论文详细信息
BMC Research Notes
Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans
Frank Döring2  Constance Schmelzer1  Simone Onur2  Alexandra Fischer2 
[1] Research Unit Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany;Institute for Human Nutrition and Food Science, Department of Molecular Prevention, Christian Albrechts University, Kiel, Germany
关键词: Inflammation;    DNA methylation;    Gene expression;    Ubiquinol;    Coenzyme Q10;   
Others  :  1165555
DOI  :  10.1186/1756-0500-5-540
 received in 2012-04-03, accepted in 2012-09-20,  发布年份 2012
PDF
【 摘 要 】

Background

Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days.

Findings

Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif) ligand 2 gene (CXCL2) more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD) without changing the methylation pattern of the respective gene.

Conclusion

In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

【 授权许可】

   
2012 Fischer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416031815866.pdf 1676KB PDF download
Figure 2. 26KB Image download
Figure 1. 275KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Littarru GP, Tiano L: Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 2007, 37(1):31-37.
  • [2]Littarru GP, Tiano L: Clinical aspects of coenzyme Q10: an update. Nutrition 2010, 26(3):250-254.
  • [3]Mukai K, Itoh S, Morimoto H: Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K, and tocopherolquinone) in solution. J Biol Chem 1992, 267(31):22277-22281.
  • [4]Crane FL, Navas P: The diversity of coenzyme Q function. Mol Aspects Med 1997, 18(Suppl):S1-S6.
  • [5]Schmelzer C, Doring F: Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes. Biofactors 2010, 36(3):222-228.
  • [6]Schmelzer C, Kohl C, Rimbach G, Doring F: The reduced form of coenzyme Q10 decreases the expression of lipopolysaccharide-sensitive genes in human THP-1 cells. J Med Food 2011, 14(4):391-397.
  • [7]Groneberg DA, Kindermann B, Althammer M, Klapper M, Vormann J, Littarru GP, Doring F: Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 2005, 37(6):1208-1218.
  • [8]Schmelzer C, Kubo H, Mori M, Sawashita J, Kitano M, Hosoe K, Boomgaarden I, Doring F, Higuchi K: Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice. Mol Nutr Food Res 2010, 54(6):805-815.
  • [9]Schmelzer C, Niklowitz P, Okun JG, Haas D, Menke T, Doring F: Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans. IUBMB Life 2011, 63(1):42-48.
  • [10]Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM: Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010, 151(10):4756-4764.
  • [11]Yubero-Serrano EM, Gonzalez-Guardia L, Rangel-Zuniga O, Delgado-Lista J, Gutierrez-Mariscal FM, Perez-Martinez P, Delgado-Casado N, Cruz-Teno C, Tinahones FJ, Villalba JM, et al.: Mediterranean diet supplemented with coenzyme Q10 modifies the expression of proinflammatory and endoplasmic reticulum stress-related genes in elderly men and women. J Gerontol A: Biol Sci Med Sci 2012, 67(1):3-10.
  • [12]van den Donk M, van Engeland M, Pellis L, Witteman BJ, Kok FJ, Keijer J, Kampman E: Dietary folate intake in combination with MTHFR C677T genotype and promoter methylation of tumor suppressor and DNA repair genes in sporadic colorectal adenomas. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007, 16(2):327-333.
  • [13]van Engeland M, Weijenberg MP, Roemen GM, Brink M, de Bruine AP, Goldbohm RA, van den Brandt PA, Baylin SB, de Goeij AF, Herman JG: Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 2003, 63(12):3133-3137.
  • [14]Silahtaroglu A, Stenvang J: MicroRNAs, epigenetics and disease. Essays Biochem 2010, 48(1):165-185.
  • [15]Delaval K, Feil R: Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004, 14(2):188-195.
  • [16]Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002, 99(6):3740-3745.
  • [17]Bender AT, Beavo JA: PDE1B2 regulates cGMP and a subset of the phenotypic characteristics acquired upon macrophage differentiation from a monocyte. Proc Natl Acad Sci USA 2006, 103(2):460-465.
  • [18]Bourdonnay E, Morzadec C, Sparfel L, Galibert MD, Jouneau S, Martin-Chouly C, Fardel O, Vernhet L: Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol 2009, 46(4):649-656.
  • [19]Liang F, Seyrantepe V, Landry K, Ahmad R, Ahmad A, Stamatos NM, Pshezhetsky AV: Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J Biol Chem 2006, 281(37):27526-27538.
  • [20]Liu Q, Zheng J, Yin DD, Xiang J, He F, Wang YC, Liang L, Qin HY, Liu L, Liang YM, Han H: Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-alpha and NO production in macrophages. Mol Biol Rep 2012, 39(5):5643-5650.
  • [21]Yu J, Zhang L: The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 2005, 331(3):851-858.
  • [22]Kim HY, Kim HS: Upregulation of MIP-2 (CXCL2) expression by 15-deoxy-Delta(12,14)-prostaglandin J(2) in mouse peritoneal macrophages. Immunol Cell Biol 2007, 85(1):60-67.
  • [23]Lkhagvaa B, Tani K, Sato K, Toyoda Y, Suzuka C, Sone S: Bestatin, an inhibitor for aminopeptidases, modulates the production of cytokines and chemokines by activated monocytes and macrophages. Cytokine 2008, 44(3):386-391.
  • [24]Rehli M, Krause SW, Schwarzfischer L, Kreutz M, Andreesen R: Molecular cloning of a novel macrophage maturation-associated transcript encoding a protein with several potential transmembrane domains. Biochem Biophys Res Commun 1995, 217(2):661-667.
  • [25]Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JP: Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 2007, 3(10):2023-2036.
  • [26]Premkumar VG, Yuvaraj S, Shanthi P, Sachdanandam P: Co-enzyme Q10, riboflavin and niacin supplementation on alteration of DNA repair enzyme and DNA methylation in breast cancer patients undergoing tamoxifen therapy. Br J Nutr 2008, 100(6):1179-1182.
  • [27]Brunaud L, Alberto JM, Ayav A, Gerard P, Namour F, Antunes L, Braun M, Bronowicki JP, Bresler L, Gueant JL: Effects of vitamin B12 and folate deficiencies on DNA methylation and carcinogenesis in rat liver. Clin Chem Lab Med: CCLM / FESCC 2003, 41(8):1012-1019.
  • [28]Fischer A, Gaedicke S, Frank J, Doring F, Rimbach G: Dietary vitamin E deficiency does not affect global and specific DNA methylation patterns in rat liver. Br J Nutr 2010, 104(7):935-940.
  • [29]Ly A, Hoyt L, Crowell J, Kim YI: Folate and DNA Methylation. Antioxid Redox Signal 2012.
  • [30]Uekawa A, Katsushima K, Ogata A, Kawata T, Maeda N, Kobayashi K, Maekawa A, Tadokoro T, Yamamoto Y: Change of epigenetic control of cystathionine beta-synthase gene expression through dietary vitamin B12 is not recovered by methionine supplementation. J Nutrigenet Nutrigenomics 2009, 2(1):29-36.
  • [31]Waterland RA: Assessing the effects of high methionine intake on DNA methylation. J Nutr 2006, 136(6 Suppl):1706S-1710S.
  • [32]Wolff GL, Kodell RL, Moore SR, Cooney CA: Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J: Off Publ Fed Am Soc Exp Biol 1998, 12(11):949-957.
  • [33]Schmelzer C, Okun JG, Haas D, Higuchi K, Sawashita J, Mori M, Doring F: The reduced form of coenzyme Q10 mediates distinct effects on cholesterol metabolism at the transcriptional and metabolite level in SAMP1 mice. IUBMB Life 2010, 62(11):812-818.
  • [34]Ehrlich M: Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 2003, 88(5):899-910.
  • [35]De Smet C, Lurquin C, Lethe B, Martelange V, Boon T: DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 1999, 19(11):7327-7335.
  • [36]Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M: The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983, 11(19):6883-6894.
  • [37]Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP: Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998, 72:141-196.
  • [38]Schmelzer C, Kitano M, Rimbach G, Niklowitz P, Menke T, Hosoe K, Doring F: Effects of ubiquinol-10 on microRNA-146a expression in vitro and in vivo. Mediators Inflamm 2009, 2009:415437.
  • [39]Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F: Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 2008, 32(1–4):179-183.
  • [40]Schmelzer C, Lindner I, Vock C, Fujii K, Doring F: Functional connections and pathways of coenzyme Q10-inducible genes: an in-silico study. IUBMB Life 2007, 59(10):628-633.
  • [41]Schmelzer C, Lorenz G, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F: Effects of Coenzyme Q10 on TNF-alpha secretion in human and murine monocytic cell lines. Biofactors 2007, 31(1):35-41.
  • [42]Dominguez PM, Ardavin C: Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 2010, 234(1):90-104.
  • [43]Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM: Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol 2009, 78(11):1391-1400.
  文献评价指标  
  下载次数:40次 浏览次数:15次