期刊论文详细信息
BMC Research Notes
Differences in PAR-2 activating potential by king crab (Paralithodes camtschaticus), salmon (Salmo salar), and bovine (Bos taurus) trypsin
Berit E Bang1  Ole-Morten Seternes2  Ingebrigt Sylte1  Kurt Kristiansen1  Anett K Larsen1 
[1]Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
[2]Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
关键词: Electrostatic interaction;    Protease-activated receptor-2;    Molecular modelling;    King crab trypsin;   
Others  :  1142119
DOI  :  10.1186/1756-0500-6-281
 received in 2013-02-21, accepted in 2013-07-03,  发布年份 2013
PDF
【 摘 要 】

Background

Salmon trypsin is shown to increase secretion of the pro-inflammatory cytokine interleukin (IL)-8 from human airway epithelial cells through activation of PAR-2. Secretion of IL-8 induced by king crab trypsin is observed in a different concentration range compared to salmon trypsin, and seems to be only partially related to PAR-2 activation. This report aim to identify differences in the molecular structure of king crab trypsin (Paralithodes camtschaticus) compared to salmon (Salmo salar) and bovine trypsin (Bos taurus) that might influence the ability to activate protease-activated receptor-2 (PAR-2).

Results

During purification king crab trypsin displayed stronger binding capacity to the anionic column used in fast protein liquid chromatography compared to fish trypsins, and was identified as a slightly bigger molecule. Measurements of enzymatic activity yielded no obvious differences between the trypsins tested. Molecular modelling showed that king crab trypsin has a large area with strong negative electrostatic potential compared to the smaller negative areas in bovine and salmon trypsins. Bovine and salmon trypsins also displayed areas with strong positive electrostatic potential, a feature lacking in the king crab trypsin. Furthermore we have identified 3 divergent positions (Asp196, Arg244, and Tyr247) located near the substrate binding pocket of king crab trypsin that might affect the binding and cleavage of PAR-2.

Conclusion

These preliminary results indicate that electrostatic interactions could be of importance in binding, cleavage and subsequent activation of PAR-2.

【 授权许可】

   
2013 Larsen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327222732644.pdf 1075KB PDF download
Figure 3. 158KB Image download
Figure 2. 65KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Nystedt S, Emilsson K, Larsson AK, Strombeck B, Sundelin J: Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 1995, 232:84-89.
  • [2]Böhm SK, Kong W, Brömme D, Smeekens SP, Anderson DC, Connolly A, Kahn M, Nelken NA, Coughlin SP, Payan DG, Bunnett NW: Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 1996, 314:1009-1016.
  • [3]Ossovskaya VS, Bunnett NW: Protease-activated receptors: Contribution to physiology and disease. Physiol Rev 2004, 84:579-621.
  • [4]Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Henry PJ, Carr MJ, Hamilton JR, Moffatt JD: A protective role for protease-activated receptors in the airways. Nature 1999, 398:156-160.
  • [5]Ramachandran R, Hollenberg MD: Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2008, 153(Suppl 1):S263-S282.
  • [6]Larsen AK, Seternes OM, Larsen M, Aasmoe L, Bang B: Salmon trypsin stimulates the expression of interleukin-8 via protease-activated receptor-2. Toxicol Appl Pharmacol 2008, 230:276-282.
  • [7]Orford RR, Wilson JT: Epidemiologic and immunologic studies in processors of the king Crab. Am J Ind Med 1985, 7:155-169.
  • [8]Cartier A, Malo JL, Ghezzo H, McCants M, Lehrer SB: IgE sensitization in snow crab-processing workers. J Allergy Clin Immunol 1986, 78:344-348.
  • [9]Jeebhay MF, Robins TG, Lehrer SB, Lopata AL: Occupational seafood allergy: a review. Occup Environ Med 2001, 58:553-562.
  • [10]Jeebhay MF, Robins TG, Miller ME, Bateman E, Smuts M, Baatjies R, Lopata AL: Occupational allergy and asthma among salt water fish processing workers. Am J Ind Med 2008, 51:899-910.
  • [11]Ortega HG, Daroowalla F, Petsonk EL, Lewis D, Berardinelli S Jr, Jones W, Kreiss K, Weissman DN: Respiratory symptoms among crab processing workers in Alaska: Epidemiological and environmental assessment. Am J Ind Med 2001, 39:598-607.
  • [12]Bang B, Aasmoe L, Aamodt BH, Aardal L, Andorsen GS, Bolle R, Bøe R, Van Do T, Evans R, Florvåg E, Gram IT, Huser PO, Kramvik E, Løchen ML, Pedersen B, Rasmussen T: Exposure and airway effects of seafood industry workers in Northern Norway. J Occup Environ Med 2005, 47:482-492.
  • [13]Howse D, Gautrin D, Neis B, Cartier A, Horth-Susin L, Jong M, Swanson MC: Gender and snow crab occupational asthma in Newfoundland and Labrador, Canada. Environ Res 2006, 101:163-174.
  • [14]Gautrin D, Cartier A, Howse D, Horth-Susin L, Jong M, Swanson M, Lehrer S, Fox G, Neis B: Occupational asthma and allergy in snow crab processing in Newfoundland and Labrador. Occup Environ Med 2010, 67:17-23.
  • [15]Shiryaeva O, Aasmoe L, Straume B, Bang BE: Respiratory impairment in Norwegian salmon industry workers: a cross-sectional study. J Occup Environ Med 2010, 52:1167-1172.
  • [16]Larsen AK, Seternes OM, Larsen M, Kishimura H, Rudenskaya GN, Bang B: Purified sardine and king crab trypsin display individual differences in PAR-2-, NF-κB-, and IL-8 signaling. Toxicol Environ Chem 2011, 93:1991-2011.
  • [17]Kangas E, Tidor B: Optimizing electrostatic affinity in ligand-receptor binding: Theory, computation, and ligand properties. J Chem Phys 1998, 109:7522-7545.
  • [18]Green DF, Tidor B: Evaluation of electrostatic interactions. Curr Protoc Bioinformatics 2003. Aug; Chapter 8:Unit 8.3
  • [19]Rang HP, Dale MM, Ritter JM: How drugs act: general principles and molecular aspects. In Pharmacology. 4th edition. Edited by Hunter L. Edinburgh: Churchill Livingstone, Harcourt Brace and Company Ltd; 1999:2-45.
  • [20]Rudenskaya GN, Isaev VA, Shmoylov AM, Karabasova MA, Shvets SV, Miroshnikov AI, Brusov AB: Preparation of proteolytic enzymes from Kamchatka crab Paralithodes camchatica hepatopancreas and their application. Appl Biochem and Biotech 2000, 88:175-183.
  • [21]Kislitsyn YA, Rebrikov DV, Dunaevskii YA, Rudenskaya GN: Isolation and primary structure of trypsin from the King crab Paralithodes camchaticus. Russian J of Bioorg Chem 2003, 29:242-248.
  • [22]Kishimura H, Hayashi K, Miyashita Y, Nonami Y: Characteristics of trypsins from the vicera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem 2006, 97:65-70.
  • [23]Outzen H, Berglund GI, Smalås AO, Willassen NP: Temperature and pH sensitivity of trypsins from Atlantic Salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol B Biochem Mol Biol 1996, 115:33-45.
  • [24]Erlanger BF, Kokowsky N, Cohen W: The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 1961, 95:271-278.
  • [25]Abagyan R, Totrov M: Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 1994, 235:983-1002.
  • [26]Bah A, Chen Z, Bush-Pelc LA, Mathews FS, Di Cera E: Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Proc Natl Acad Sci USA 2007, 104:11603-11608.
  • [27]Smalås AO, Hordvik A, Hansen LK, Hough E, Jynge K: Crystallization and preliminary X-ray crystallographic studies of benzamidine-inhibited trypsin from the North Atlantic salmon (Salmo Salar). J Mol Biol 1990, 214:355-358.
  • [28]Ramachandran R, Mihara K, Mathur M, Rochdi MD, Bouvier M, DeFea K, Hollenberg MD: Agonist-biased signalling via proteinase activated receptor-2: differential activation of calcium and MAPkinase pathways. Mol Pharmacol 2009, 76:791-801.
  • [29]Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ: Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003, 100:10782-10787.
  • [30]Galandrin S, Oligny-Longpré G, Bouvier M: The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 2007, 28:423-430.
  • [31]Kenakin T: Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 2007, 28:407-415.
  • [32]Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB: Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007, 320:1-13.
  • [33]Saxena AK, Alam I, Dixit A, Saxena M: Internet resources in GPCR modelling. SAR QSAR Environ Res 2008, 19:11-25.
  • [34]Blackhart BD, Ruslim-Litrus L, Lu CC, Alves VL, Teng W, Scarborough RM, Reynolds EE, Oksenberg D: Extracellular mutations of protease-activated receptor-1 result in differential activation by thrombin and thrombin receptor agonist peptide. Mol Pharmacol 2000, 58:1178-1187.
  • [35]Gerszten RE, Chen J, Ishii M, Ishii K, Wang L, Nanevicz T, Turck CW, Vu TK, Coughlin SR: Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 1994, 368:648-651.
  • [36]Nanevicz T, Ishii M, Wang L, Chen M, Chen J, Turck CW, Cohen FE, Coughlin SR: Mechanisms of thrombin receptor agonist specificity. Chimeric receptors and complementary mutations identify an agonist recognition site. J Biol Chem 1995, 270:21619-21625.
  • [37]Al-Ani B, Wijesuriya SJ, Hollenberg MD: Proteinase-activated receptor 2: differential activation of the receptor by tethered ligand and soluble peptide analogs. J Pharmacol Exp Ther 2002, 302:1046-1054.
  • [38]Zhang Q, Petersen HH, Ostergaard H, Ruf W, Olson AJ: Molecular dynamics simulations and functional characterization of the interactions of the PAR2 ectodomain with factor VIIa. Proteins 2009, 77:559-569.
  文献评价指标  
  下载次数:45次 浏览次数:44次