期刊论文详细信息
BMC Microbiology
Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire
Robert Dudler2  Alexey Dudnik1 
[1] Present address: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 4, Hørsholm 2970, Denmark;Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland
关键词: Type III secretion system;    Triticum aestivum;    Syringolin A;    Pseudomonas syringae;   
Others  :  1131229
DOI  :  10.1186/s12866-014-0304-5
 received in 2014-07-07, accepted in 2014-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

Pseudomonas syringae is pathogenic to a large number of plant species. For host colonization and disease progression, strains of this bacterium utilize an array of type III-secreted effectors and other virulence factors, including small secreted molecules such as syringolin A, a peptide derivative that inhibits the eukaryotic proteasome. In strains colonizing dicotyledonous plants, the compound was demonstrated to suppress the salicylic-acid-dependent defense pathway. Here, we analyze virulence factors of three strains colonizing wheat (Triticum aestivum): P. syringae pathovar syringae (Psy) strains B64 and SM, as well as P. syringae BRIP34876. These strains have a relatively small repertoire of only seven to eleven type III secreted effectors (T3Es) and differ in their capacity to produce syringolin A. The aim of this study was to analyze the contribution of various known virulence factors in the context of a small T3E repertoire.

Results

We demonstrate that syringolin A production enhances disease symptom development upon direct infiltration of strains into wheat leaves. However, it is not universally required for colonization, as Psy SM, which lacks syringolin biosynthesis genes, reaches cell densities comparable to syringolin A producer P. syringae BRIP34876. Next, we show that despite the small set of T3E-encoding genes, the type III secretion system remains the key pathogenicity determinant in these strains, and that phenotypic effects of deleting T3E-coding genes become apparent only when multiple effectors are removed.

Conclusions

Whereas production of syringolin A is not required for successful colonization of wheat leaves by P. syringae strains, its production results in increased lesion formation. Despite the small number of known T3Es encoded by the analyzed strains, the type III secretion system is essential for endophytic growth of these strains.

【 授权许可】

   
2014 Dudnik and Dudler; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150301023612763.pdf 723KB PDF download
Figure 3. 41KB Image download
Figure 2. 22KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Palleroni N: Genus I. Pseudomonas. In Bergey’s Man Syst Bacteriol Second Ed Vol 2, Part B. Edited by Garrity G, Brenner D, Krieg N, Staley J. Springer, New York; 2005:323-379.
  • [2]Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ: Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 2000, 13:1340-1345.
  • [3]Saxena AK, Pal KK, Tilak KVBR: Bacterial biocontrol agents and their role in plant disease management. In Biocontrol Potential Its Exploit Sustain Agric Vol 1 Crop Dis Weeds, Nematodes. Edited by Upadhyay RK, Mukerji KG, Chamola BP. Springer US, New York, USA; 2000:25-37.
  • [4]Gellatly SL, Hancock REW: Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013, 67:159-173.
  • [5]Ceri M, Ortabozkoyun L, Altay M, Unverdi S, Kurultak I, Huddam B, Kilic F, Yilmaz R, Duranay M: Peritonitis due to Pseudomonas stutzeri, an organism that may be difficult to culture. Perit Dial Int 2010, 30:484-486.
  • [6]Höfte M, De Vos P: Plant pathogenic Pseudomonas species. In Plant-Associated Bact. Edited by Gnanamanickam SS. Springer Netherlands, Dordrecht; 2006:507-533.
  • [7]O’Brien HE, Thakur S, Guttman DS: Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu Rev Phytopathol 2011, 49:269-289.
  • [8]Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD: Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012, 13:614-629.
  • [9]Lindeberg M, Cunnac S, Collmer A: Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 2012, 20:199-208.
  • [10]Qi D, Innes RW: Recent advances in plant NLR structure, function, localization, and signaling. Front Immunol 2013, 4:348.
  • [11]Gimenez-Ibanez S, Rathjen JP: The case for the defense: plants versus Pseudomonas syringae. Microbes Infect 2010, 12:428-437.
  • [12]Galán JE, Wolf-Watz H: Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006, 444:567-573.
  • [13]Büttner D: Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012, 76:262-310.
  • [14]Lee AH-Y, Middleton MA, Guttman DS, Desveaux D: Phytopathogen type III effectors as probes of biological systems. Microb Biotechnol 2013, 6:230-240.
  • [15]Cunnac S, Lindeberg M, Collmer A: Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 2009, 12:53-60.
  • [16]Deslandes L, Rivas S: Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 2012, 17:644-655.
  • [17]Jones JDG, Dangl JL: The plant immune system. Nature 2006, 444:323-329.
  • [18]Zhou J-M, Chai J: Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 2008, 11:179-185.
  • [19]Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 2003, 112:379-389.
  • [20]Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou J-M: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 2010, 7:290-301.
  • [21]Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S: Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 2008, 18:1824-1832.
  • [22]Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, Zhou J-M: A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 2010, 22:2033-2044.
  • [23]Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou J-M: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 2008, 18:74-80.
  • [24]DebRoy S, Thilmony R, Kwack Y-B, Nomura K, He SY: A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 2004, 101:9927-9932.
  • [25]Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I, Li Z, López-Torrejón G, Díaz I, Del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E: A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol 2012, 14:669-681.
  • [26]Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A: Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci U S A 2011, 108:2975-2980.
  • [27]Lindeberg M, Cunnac S, Collmer A: The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 2009, 10:767-775.
  • [28]Qi M, Wang D, Bradley CA, Zhao Y: Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine Pseudomonads. PLoS One 2011, 6:e16451.
  • [29]O’Brien HE, Thakur S, Gong Y, Fung P, Zhang J, Yuan L, Wang PW, Yong C, Scortichini M, Guttman DS: Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol 2012, 12:141. BioMed Central Full Text
  • [30]Almeida NF, Yan S, Lindeberg M, Studholme DJ, Schneider DJ, Condon B, Liu H, Viana CJ, Warren A, Evans C, Kemen E, Maclean D, Angot A, Martin GB, Jones JD, Collmer A, Setubal JC, Vinatzer BA: A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 2009, 22:52-62.
  • [31]Bender CL, Alarcón-Chaidez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev MMBR 1999, 63:266-292.
  • [32]Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R: A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008, 452:755-758.
  • [33]Kelley DR, Estelle M: Ubiquitin-mediated control of plant hormone signaling. Plant Physiol 2012, 160:47-55.
  • [34]Amrein H, Makart S, Granado J, Shakya R, Schneider-Pokorny J, Dudler R: Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301 D-R. Mol Plant Microbe Interact 2004, 17:90-97.
  • [35]Ramel C, Tobler M, Meyer M, Bigler L, Ebert M-O, Schellenberg B, Dudler R: Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate. BMC Biochem 2009, 10:26. BioMed Central Full Text
  • [36]Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL: Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 2011, 7:e1002132.
  • [37]Schellenberg B, Ramel C, Dudler R: Pseudomonas syringae virulence factor syringolin a counteracts stomatal immunity by proteasome inhibition. Mol Plant-Microbe Interact 2010, 23:1287-1293.
  • [38]Misas-Villamil JC, Kolodziejek I, Crabill E, Kaschani F, Niessen S, Shindo T, Kaiser M, Alfano JR, van der Hoorn RAL: Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites. PLoS Pathog 2013, 9:e1003281.
  • [39]Dudnik A, Bigler L, Dudler R: Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16. Appl Environ Microbiol 2014, 80:3741-3748.
  • [40]Dudnik A, Dudler R: Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat. Stand Genomic Sci 2013, 8:420-429.
  • [41]Gardiner DM, Stiller J, Covarelli L, Lindeberg M, Shivas RG, Manners JM: Genome sequences of Pseudomonas spp. Isolated from Cereal Crops. Genome Announc 2013, 1:e00209-e00213.
  • [42]Dudnik A, Dudler R: High-quality draft genome sequence of Pseudomonas syringae pv. Syringae Strain SM, isolated from wheat. Genome Announc 2013, 1:e00610-e00613.
  • [43]Dudnik A, Dudler R: Genomics-based exploration of virulence determinants and host-specific adaptations of Pseudomonas syringae strains isolated from grasses. Pathogens 2014, 3:121-148.
  • [44]Mucyn TS, Yourstone S, Lind AL, Biswas S, Nishimura MT, Baltrus DA, Cumbie JS, Chang JH, Jones CD, Dangl JL, Grant SR: Variable suites of non-effector genes are co-regulated in the type III secretion virulence regulon across the Pseudomonas syringae phylogeny. PLoS Pathog 2014, 10:e1003807.
  • [45]Deng WL, Huang HC: Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. J Bacteriol 1999, 181:2298-2301.
  • [46]Tang X, Xiao Y, Zhou J-M: Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact 2006, 19:1159-1166.
  • [47]Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK: GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 2003, 16:1106-1117.
  • [48]Lapouge K, Schubert M, Allain FH-T, Haas D: Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 2008, 67:241-253.
  • [49]Kitten T, Kinscherf TG, McEvoy JL, Willis DK: A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 1998, 28:917-929.
  • [50]Ramel C, Baechler N, Hildbrand M, Meyer M, Schädeli D, Dudler R: Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome. Mol Plant-Microbe Interact 2012, 25:1198-1208.
  • [51]Willis DK, Hrabak EM, Rich JJ, Barta TM, Lindow SE, Panopoulos NJ: Isolation and Characterization of a Pseudomonas syringae pv. syringae Mutant Deficient in Lesion Formation on Bean. Mol Plant-Microbe Interact 1990, 3:149.
  • [52]Records AR, Gross DC: Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010, 192:3584-3596.
  • [53]Van den Broek D, Bloemberg GV, Lugtenberg B: The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 2005, 7:1686-1697.
  • [54]Driscoll WW, Pepper JW, Pierson LS, Pierson EA: Spontaneous Gac mutants of Pseudomonas biological control strains: cheaters or mutualists? Appl Environ Microbiol 2011, 77:7227-7235.
  • [55]Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY: A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 2006, 313:220-223.
  • [56]Gangadharan A, Sreerekha M-V, Whitehill J, Ham JH, Mackey D: The Pseudomonas syringae pv. tomato Type III Effector HopM1 Suppresses Arabidopsis Defenses Independent of Suppressing Salicylic Acid Signaling and of Targeting AtMIN7. PLoS One 2013, 8:e82032.
  • [57]Jelenska J, van Hal JA, Greenberg JT: Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 2010, 107:13177-13182.
  • [58]Ham JH, Majerczak DR, Nomura K, Mecey C, Uribe F, He S-Y, Mackey D, Coplin DL: Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol Plant Microbe Interact 2009, 22:703-712.
  • [59]Munkvold KR, Russell AB, Kvitko BH, Collmer A: Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato. Mol Plant Microbe Interact 2009, 22:1341-1355.
  • [60]Lee J, Teitzel GM, Munkvold K, del Pozo O, Martin GB, Michelmore RW, Greenberg JT: Type III secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces. Plant Physiol 2012, 158:1803-1818.
  • [61]McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, Guttman DS, Wang PW, Straub C, Vanneste J, Rainey PB, Templeton MD: Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 2013, 9:e1003503.
  • [62]Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT: A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 2007, 17:499-508.
  • [63]Badel JL, Shimizu R, Oh H-S, Collmer A: A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant-Microbe Interact 2006, 19:99-111.
  • [64]Arrebola E, Cazorla FM, Codina JC, Gutiérrez-Barranquero JA, Pérez-García A, de Vicente A: Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Int Microbiol 2009, 12:87-95.
  • [65]Nomura K, Mecey C, Lee Y-N, Imboden LA, Chang JH, He SY: Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. Proc Natl Acad Sci U S A 2011, 108:10774-10779.
  • [66]Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: (eds.): Current Protocols in Molecular Biology . John Wiley & Sons, New York, USA; 1998.
  • [67]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA; 2001.
  文献评价指标  
  下载次数:29次 浏览次数:13次