期刊论文详细信息
BMC Medical Genetics
A whole genome SNP genotyping by DNA microarray and candidate gene association study for kidney stone disease
Pa-thai Yenchitsomanus3  Duangporn Chuawattana2  Suchai Sritippayawan2  Nunghathai Sawasdee3  Oranud Praditsap4  Nirinya Sudtachat1  Choochai Nettuwakul3  Nanyawan Rungroj5 
[1] Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand;Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand;Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand;Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
关键词: Candidate gene;    Single nucleotide polymorphisms;    Genetic association study;    Nephrolithiasis;    Kidney stone disease;   
Others  :  1091944
DOI  :  10.1186/1471-2350-15-50
 received in 2013-09-24, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

Background

Kidney stone disease (KSD) is a complex disorder with unknown etiology in majority of the patients. Genetic and environmental factors may cause the disease. In the present study, we used DNA microarray to genotype single nucleotide polymorphisms (SNP) and performed candidate gene association analysis to determine genetic variations associated with the disease.

Methods

A whole genome SNP genotyping by DNA microarray was initially conducted in 101 patients and 105 control subjects. A set of 104 candidate genes reported to be involved in KSD, gathered from public databases and candidate gene association study databases, were evaluated for their variations associated with KSD.

Results

Altogether 82 SNPs distributed within 22 candidate gene regions showed significant differences in SNP allele frequencies between the patient and control groups (P < 0.05). Of these, 4 genes including BGLAP, AHSG, CD44, and HAO1, encoding osteocalcin, fetuin-A, CD44-molecule and glycolate oxidase 1, respectively, were further assessed for their associations with the disease because they carried high proportion of SNPs with statistical differences of allele frequencies between the patient and control groups within the gene. The total of 26 SNPs showed significant differences of allele frequencies between the patient and control groups and haplotypes associated with disease risk were identified. The SNP rs759330 located 144 bp downstream of BGLAP where it is a predicted microRNA binding site at 3′UTR of PAQR6 – a gene encoding progestin and adipoQ receptor family member VI, was genotyped in 216 patients and 216 control subjects and found to have significant differences in its genotype and allele frequencies (P = 0.0007, OR 2.02 and P = 0.0001, OR 2.02, respectively).

Conclusions

Our results suggest that these candidate genes are associated with KSD and PAQR6 comes into our view as the most potent candidate since associated SNP rs759330 is located in the miRNA binding site and may affect mRNA expression level.

【 授权许可】

   
2014 Rungroj et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128175308662.pdf 258KB PDF download
【 参考文献 】
  • [1]Coe FL, Evan A, Worcester E: Kidney stone disease. J Clin Invest 2005, 115(10):2598-2608.
  • [2]Sritippayawan S, Borvornpadungkitti S, Paemanee A, Predanon C, Susaengrat W, Chuawattana D, Sawasdee N, Nakjang S, Pongtepaditep S, Nettuwakul C, Rungroj N, Vasuvattakul S, Malasit P, Yenchitsomanus PT: Evidence suggesting a genetic contribution to kidney stone in northeastern Thai population. Urol Res 2009, 37(3):141-146.
  • [3]Manolio TA, Collins FS: The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med 2009, 60:443-456.
  • [4]Nakamura Y: DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet 2009, 54(1):1-8.
  • [5]Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, Hayashi Y, Kohri K: Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int 2007, 72(5):592-598.
  • [6]Liu CC, Huang SP, Tsai LY, Wu WJ, Juo SH, Chou YH, Huang CH, Wu MT: The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin Chim Acta 2010, 411(9–10):739-743.
  • [7]Chen WC, Wu HC, Lu HF, Tsai FJ: Calcitonin receptor gene polymorphism: a possible genetic marker for patients with calcium oxalate stones. Eur Urol 2001, 39(6):716-719.
  • [8]Chen WC, Chen HY, Lu HF, Hsu CD, Tsai FJ: Association of the vitamin D receptor gene start codon Fok I polymorphism with calcium oxalate stone disease. BJU Int 2001, 87(3):168-171.
  • [9]Tsai FJ, Lin CC, Lu HF, Chen HY, Chen WC: Urokinase gene 3′-UTR T/C polymorphism is associated with urolithiasis. Urology 2002, 59(3):458-461.
  • [10]Chen WC, Wu HC, Chen HY, Wu MC, Hsu CD, Tsai FJ: Interleukin-1β gene and receptor antagonist gene polymorphisms in patients with calcium oxalate stones. Urol Res 2001, 29(5):321-324.
  • [11]Mittal RD, Bid HK, Manchanda PK, Kapoor R: Association of interleukin-1β gene and receptor antagonist polymorphisms with calcium oxalate urolithiasis. J Endourol 2007, 21(12):1565-1570.
  • [12]Tsai FJ, Wu HC, Chen HY, Lu HF, Hsu CD, Chen WC: Association of E-cadherin gene 3′-UTR C/T polymorphism with calcium oxalate stone disease. Urol Int 2003, 70(4):278-281.
  • [13]Chen WC, Wu HC, Lin WC, Wu MC, Hsu CD, Tsai FJ: The association of androgen- and oestrogen-receptor gene polymorphisms with urolithiasis in men. BJU Int 2001, 88(4):432-436.
  • [14]Chen WC, Chen HY, Wu HC, Wu MC, Hsu CD, Tsai FJ: Vascular endothelial growth factor gene polymorphism is associated with calcium oxalate stone disease. Urol Res 2003, 31(3):218-222.
  • [15]Vezzoli G, Terranegra A, Arcidiacono T, Biasion R, Coviello D, Syren ML, Paloschi V, Giannini S, Mignogna G, Rubinacci A, Ferraretto A, Cusi D, Bianchi G, Soldati L: R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int 2007, 71(11):1155-1162.
  • [16]Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, Sulem P, Halldorsson BV, de Vegt F, d’Ancona FC, den Heijer M, Franzson L, Christiansen C, Alexandersen P, Rafnar T, Kristjansson K, Sigurdsson G, Kiemeney LA, Bodvarsson M, Indridason OS, Palsson R, Kong A, Thorsteinsdottir U, Stefansson K: Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 2009, 41(8):926-930.
  • [17]Gudbjartsson DF, Holm H, Indridason OS, Thorleifsson G, Edvardsson V, Sulem P, de Vegt F, d’Ancona FC, den Heijer M, Wetzels JF, Franzson L, Rafnar T, Kristjansson K, Bjornsdottir US, Eyjolfsson GI, Kiemeney LA, Kong A, Palsson R, Thorsteinsdottir U, Stefansson K: Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet 2010, 6(7):e1001039.
  • [18]Rungroj N, Sritippayawan S, Thongnoppakhun W, Paemanee A, Sawasdee N, Nettuwakul C, Sudtachat N, Ungsupravate D, Praihirunkit P, Chuawattana D, Akkarapatumwong V, Borvornpadungkitti S, Susaengrat W, Vasuvattakul S, Malasit P, Yenchitsomanus PT: Prothrombin haplotype associated with kidney stone disease in Northeastern Thai patients. Urology 2011, 77(1):249. e17-23
  • [19]Rungroj N, Sudtachat N, Nettuwakul C, Sawasdee N, Praditsap O, Jungtrakoon P, Sritippayawan S, Chuawattana D, Borvornpadungkitti S, Predanon C, Susaengrat W, Yenchitsomanus PT: Association between human prothrombin variant (T165M) and kidney stone disease. PLoS One 2012, 7(9):e45533.
  • [20]Yue P, Melamud E, Moult J: SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinforma 2006, 7:166. BioMed Central Full Text
  • [21]Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MA: Navigator for human genome epidemiology. Nat Genet 2008, 40(2):124-125.
  • [22]Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C: Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 2004, 50(7):1156-1164.
  • [23]Nettuwakul C, Sawasdee N, PT Y s: Rapid detection of solute carrier family 4, member 1 (SLC4A1) mutations and polymorphisms by high-resolution melting analysis. Clin Biochem 2010, 43(4–5):497-504.
  • [24]Aulchenko YS, Ripke S, Isaacs A, van Duijn CM: GenABEL: an R library for genome-wide association analysis. Bioinformatics 2007, 23(10):1294-1296.
  • [25]Strohmaier WL, Schlee-Giehl K, Bichler KH: Osteocalcin response to calcium-restricted diet: a helpful tool for the workup of hypercalciuria. Eur Urol 1996, 30(1):103-107.
  • [26]Desbois C, Hogue DA, Karsenty G: The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 1994, 269(2):1183-1190.
  • [27]Chen WC, Chen HY, Wu JY, Chen YT, Tsai FJ: Osteocalcin gene Hind III polymorphism is not correlated with calcium oxalate stone disease. Urol Res 2001, 29(2):98-101.
  • [28]Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, Funk WD: PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol 2005, 61(3):372-380.
  • [29]Shughrue PJ, Stumpf WE, Sar M: The distribution of progesterone receptor in the 20 day old foetal mouse: an autoradiographic study with 125I-progestin. Endocrinology 1988, 123(5):2382-2389.
  • [30]Brunette MG, Leclerc M: Renal action of progesterone: effect on calcium reabsorption. Mol Cell Endocrinol 2002, 194(1–2):183-190.
  • [31]Stejskal D, Karpisek M, Vrtal R, Student V, Solichova P, Fiala R, Stejskal P: Urine fetuin-A values in relation to the presence of urolithiasis. BJU Int 2008, 101(9):1151-1154.
  • [32]Aksoy H, Aksoy Y, Ozturk N, Aydin HR, Yildirim AK, Akçay F: Fetuin-A gene polymorphism in patients with calcium oxalate stone disease. Urology 2010, 75(4):928-932.
  • [33]Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B: CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61(7):1303-1313.
  • [34]Weber GF, Ashkar S, Glimcher MJ, Cantor H: Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 1996, 271(5248):509-512.
  • [35]Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG: Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 1998, 53(4):952-957.
  • [36]Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F: Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int 2001, 60(5):1645-1657.
  • [37]Asselman M, Verhulst A, De Broe ME, Verkoelen CF: Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 2003, 14(12):3155-3166.
  • [38]Danpure CJ: Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 2005, 25(3):303-310.
  • [39]Jones JM, Morrell JC, Gould SJ: Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases. J Biol Chem 2000, 275(17):12590-12597.
  • [40]Murray MS, Holmes RP, Lowther WT: Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design. Biochemistry 2008, 47(8):2439-2449.
  文献评价指标  
  下载次数:2次 浏览次数:6次