期刊论文详细信息
BMC Genomics
A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction
Shree P Pandey2  Ian T Baldwin1  Priyanka Pandey3  Taraka Ramji Moturu2  Prashant K Srivastava4 
[1] Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany;Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur 741252, West Bengal, India;National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India;Current address: Integrative Genomics and Medicine, MRC clinical sciences, Imperial College, London, UK
关键词: Non-model plants;    Deep-sequencing;    Plants;    Target prediction;    miRNA;   
Others  :  1217250
DOI  :  10.1186/1471-2164-15-348
 received in 2014-01-29, accepted in 2014-05-01,  发布年份 2014
PDF
【 摘 要 】

Background

Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level.

Results

We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% ‘precision’ (accuracy of prediction), 97% ‘recall’ (sensitivity)] in predicting ‘true-positive’ targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low ‘recall’ values. Score optimizations increased the ‘recall’ to only 70% (corresponding ‘precision’: 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly ‘precise’ predictions. The large number of ‘false negative’ predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches.

Conclusion

Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.

【 授权许可】

   
2014 Srivastava et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705223427690.pdf 1957KB PDF download
Figure 8. 51KB Image download
Figure 7. 50KB Image download
Figure 6. 89KB Image download
Figure 5. 56KB Image download
Figure 4. 67KB Image download
Figure 3. 59KB Image download
Figure 2. 32KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 2006, 57:19-53.
  • [2]Pandey SP, Baldwin IT: RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. Plant J 2007, 50(1):40-53.
  • [3]Pandey SP, Gaquerel E, Gase K, Baldwin IT: RNA-directed RNA polymerase3 from Nicotiana attenuata is required for competitive growth in natural environments. Plant Physiol 2008, 147(3):1212-1224.
  • [4]Pandey SP, Somssich IE: The role of WRKY transcription factors in plant immunity. Plant Physiol 2009, 150(4):1648-1655.
  • [5]Pandey SP, Moturu TR, Pandey P: Roles of Small RNAs in Regulation of Signaling and Adaptive Responses in Plants. In Recent Trends in Gene Expression. Edited by Mandal SS. Hauppauge, NY: Nova Publishers; 2013:107-132.
  • [6]Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the small RNA component of the transcriptome. Science 2005, 309(5740):1567-1569.
  • [7]Pandey SP, Shahi P, Gase K, Baldwin IT: Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci U S A 2008, 105(12):4559-4564.
  • [8]Eldem V, Celikkol Akcay U, Ozhuner E, Bakir Y, Uranbey S, Unver T: Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 2012, 7(12):e50298.
  • [9]Sun LM, Ai XY, Li WY, Guo WW, Deng XX, Hu CG, Zhang JZ: Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing. PLoS One 2012, 7(8):e43760.
  • [10]He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7):522-531.
  • [11]Carthew RW, Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136(4):642-655.
  • [12]Rogers K, Chen X: Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 2013, 25(7):2383-2399.
  • [13]Ameres SL, Zamore PD: Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 2013, 14(8):475-488.
  • [14]Beauclair L, Yu A, Bouche N: microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 2010, 62(3):454-462.
  • [15]Dugas DV, Bartel B: Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 2008, 67(4):403-417.
  • [16]Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P: The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 2007, 49(4):683-693.
  • [17]Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X: MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013, 153(3):562-574.
  • [18]German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ: Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 2008, 26(8):941-946.
  • [19]Allen E, Xie Z, Gustafson AM, Carrington JC: microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121(2):207-221.
  • [20]Allen RS, Millar AA: Genetic and Molecular Approaches to Assess MicroRNA Function. In MicroRNAs in Plant Development and Stress Responses. Edited by Sunkar R. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012:123-148. [vol. 15]
  • [21]Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002, 297(5589):2053-2056.
  • [22]Reynoso MA, Blanco FA, Zanetti ME: Insights into post-transcriptional regulation during legume-rhizobia symbiosis. Plant Signal Behav 2012, 8(2):e23102.
  • [23]Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136(4):669-687.
  • [24]Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14(6):787-799.
  • [25]Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 2004, 5(9):R65. BioMed Central Full Text
  • [26]Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D: Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 2007, 13(1):115-125.
  • [27]Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320(5880):1185-1190.
  • [28]Zhang C, Ng DW, Lu J, Chen ZJ: Roles of target site location and sequence complementarity in trans-acting siRNA formation in Arabidopsis. Plant J 2012, 69(2):217-226.
  • [29]Dai X, Zhuang Z, Zhao PX: Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 2011, 12(2):115-121.
  • [30]Ding J, Zhou S, Guan J: Finding microRNA targets in plants: current status and perspectives. Genomics Proteomics Bioinform 2012, 10(5):264-275.
  • [31]Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic data. Trends Genet 1997, 13(12):497-498.
  • [32]Bonnet E, Wuyts J, Rouze P, Van de Peer Y: Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 2004, 101(31):11511-11516.
  • [33]Zhang Y: miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 2005, 33(Web Server issue):W701-W704.
  • [34]Dai X, Zhao PX: psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 2011, 39(Web Server issue):W155-W159.
  • [35]Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL: ViennaRNA Package 2.0. Algorithms Mol Biol 2011, 6(1):26. BioMed Central Full Text
  • [36]Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2007, 2(2):e219.
  • [37]Bonnet E, He Y, Billiau K, Van de Peer Y: TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 2010, 26(12):1566-1568.
  • [38]Xie F, Zhang B: Target-align: a tool for plant microRNA target identification. Bioinformatics 2010, 26(23):3002-3003.
  • [39]Sun Y-H, Lu S, Shi R, Chiang V: Computational Prediction of Plant miRNA Targets. In RNAi and Plant Gene Function Analysis. Volume 744. Edited by Kodama H, Komamine A. Heidelberg: Springer Protocols; 2011::175-186.
  • [40]Milev I, Yahubyan G, Minkov I, Baev V: miRTour: plant miRNA and target prediction tool. Bioinformation 2011, 6(6):248-249.
  • [41]Ding J, Yu S, Ohler U, Guan J, Zhou S: imiRTP: An Integrated Method to Identifying miRNA-target Interactions in Arabidopsis thaliana. IEEE International Conference on Bioinformatics and Biomedicine: 2011 2011, 100-104.
  • [42]Jha A, Shankar R: Employing machine learning for reliable miRNA target identification in plants. BMC Genomics 2011, 12(1):636. BioMed Central Full Text
  • [43]Wu HJ, Ma YK, Chen T, Wang M, Wang XJ: PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 2012, 40(Web Server issue):W22-W28.
  • [44]Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-1146.
  • [45]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27(1):91-105.
  • [46]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol 2003, 5(1):R1. BioMed Central Full Text
  • [47]Kruger J, Rehmsmeier M: RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006, 34(Web Server issue):W451-W454.
  • [48]Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10(10):1507-1517.
  • [49]Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM: Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 2007, 581(7):1464-1474.
  • [50]Ossowski S, Schwab R, Weigel D: Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 2008, 53(4):674-690.
  • [51]Li F, Orban R, Baker B: SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 2012, 70(5):891-901.
  • [52]Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36(Database issue):D154-D158.
  • [53]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39(Database issue):D152-D157.
  • [54]Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012, 40(Database issue):D1178-D1186.
  • [55]Rajewsky N: microRNA target predictions in animals. Nat Genet 2006, 38(Suppl):S8-S13.
  • [56]Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V: Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 2005, 15(1):78-91.
  • [57]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [58]Sohn S, Comeau DC, Kim W, Wilbur WJ: Abbreviation definition identification based on automatic precision estimates. BMC Bioinforma 2008, 9:402. BioMed Central Full Text
  • [59]Monastyrskyy B, D’Andrea D, Fidelis K, Tramontano A, Kryshtafovych A: Evaluation of residue-residue contact prediction in CASP10. Proteins 2014, 82(Suppl 2):138-153.
  • [60]Krzyzanowski PM, Andrade-Navarro MA: Identification of novel stem cell markers using gap analysis of gene expression data. Genome Biol 2007, 8(9):R193. BioMed Central Full Text
  • [61]Huang YJ, Powers R, Montelione GT: Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 2005, 127(6):1665-1674.
  • [62]Eddy SR: How do RNA folding algorithms work? Nat Biotechnol 2004, 22(11):1457-1458.
  • [63]Backman TW, Sullivan CM, Cumbie JS, Miller ZA, Chapman EJ, Fahlgren N, Givan SA, Carrington JC, Kasschau KD: Update of ASRP: the Arabidopsis Small RNA Project database. Nucleic Acids Res 2008, 36(Database issue):D982-D985.
  • [64]Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD: ASRP: the Arabidopsis Small RNA Project Database. Nucleic Acids Res 2005, 33(Database issue):D637-D640.
  • [65]Hewezi T, Maier TR, Nettleton D, Baum TJ: The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 2012, 159(1):321-335.
  • [66]Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R: Transcriptome-wide identification of microRNA targets in rice. Plant J 2010, 62(5):742-759.
  • [67]Macovei A, Tuteja N: microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 2012, 12:183. BioMed Central Full Text
  • [68]Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J: Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 2010, 62(6):960-976.
  • [69]Shamimuzzaman M, Vodkin L: Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 2012, 13(1):310. BioMed Central Full Text
  • [70]Zhang B, Pan X, Stellwag EJ: Identification of soybean microRNAs and their targets. Planta 2008, 229(1):161-182.
  • [71]Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X: Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol 2010, 5(1):67-90.
  • [72]Hu LL, Huang Y, Wang QC, Zou Q, Jiang Y: Benchmark comparison of ab initio microRNA identification methods and software. Genet Mol Res 2012, 11(4):4525-4538.
  • [73]Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S, Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J, Koskinen P, Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan DW, Bryson K, Jones DT, Limaye B, et al.: A large-scale evaluation of computational protein function prediction. Nat Methods 2013, 10(3):221-227.
  • [74]Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches. Science 1985, 227(4693):1435-1441.
  • [75]Team RC: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
  文献评价指标  
  下载次数:6次 浏览次数:3次