期刊论文详细信息
BMC Evolutionary Biology
Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico
Christine VF Carrington2  Raul Tapia-Tussell3  Claudia Torres-Calzada3  Daisy Perez-Brito3  Sephra N Rampersad1 
[1] Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine. Trinidad and Tobago, West Indies;Department of Pre-clinical Science, Faculty of Medical Sciences, The University of the West Indies, St. Augustine. Trinidad and Tobago, West Indies;Laboratorio GeMBio, Centro de Investigacion Científica de Yucatan A.C., Yucatan, Mexico
关键词: Population structure;    Migration;    Genetic differentiation;    Colletotrichum spp.;   
Others  :  1087024
DOI  :  10.1186/1471-2148-13-130
 received in 2013-02-26, accepted in 2013-06-13,  发布年份 2013
PDF
【 摘 要 】

Background

C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations.

Results

The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other.

Conclusions

The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical.

【 授权许可】

   
2013 Rampersad et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116021948269.pdf 2605KB PDF download
Figure 4. 103KB Image download
Figure 3. 119KB Image download
Figure 2. 136KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Sutton BC: The genus Glomerella and its anamorph Colletotrichum. In Colletotrichum: Biology, Pathology and Control. Edited by Bailey JA, Jeger JJ. Wallingford, UK: CAB International; 1992:1-26.
  • [2]Cannon PF, Bridge PD, Monte E: Linking the past, present and future of Colletotrichum systematics. In Colletotrichum: Host specificity, pathology, and host-pathogen interaction. Edited by Prusky D, Freeman S, Dickman MB. St Paul, USA: APS Press; 2000:1-20.
  • [3]Lu G, Cannon PF, Reid A, Simmons CM: Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol Res 2004, 108:53-63.
  • [4]Freeman S, Pham M, Rodriguez RJ: Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A+T-rich DNA, and nuclear DNA analyses. Exp Mycol 1993, 17:309-322.
  • [5]Cannon PF, Buddie AG, Bridge PD: The typification of Colletotrichum gloeosporioides. Mycotaxon 2008, 104:189-204.
  • [6]Damm U, Baroncelli R, Cai L, Kubo Y, O’Connell R, Weir B, Yoshino K, Cannon PF: Colletotrichum: Species, ecology and interactions. IMA Fungus 2010, 1:161-165.
  • [7]Morton J: Papaya. In Fruits of warm climates. Miami, Florida; 1987:336-346.
  • [8]Rampersad SN: Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease of papaya in Trinidad. Plant Dis 2011, 95:1244-1254.
  • [9]Yaguchi Y, Nakanishi Y, Saito T, Nakamura S: Anthracnose of Carica papaya L. caused by Colletotrichum capsici. Ann Phytopathol Soc Japan 1995, 61:222.
  • [10]Tarnowski TBL, Ploetz RC: First report of Colletotrichum capsici causing postharvest anthracnose on papaya in South Florida. Plant Dis 2010, 94:1065.
  • [11]Sepiah M: Efficacy of propiconazole against fungi causing postharvest disease on Eksotika papaya. International Conference, Chaing Mai (Thailand), 19th July, 1993. Australian Center for International Agricultural Research. Canberra: A.C.T. Australia; 1994.
  • [12]Tapia-Tussell R, Quijano-Ramayo A, Cortes-Velazquez A, Lappe P, Larque-Saavedra A, Perez-Brito D: PCR-based detection and characterization of the fungal pathogens Colletotrichum gloeosporioides and Colletotrichum capsici causing anthracnose in papaya (Carica papaya L.) in the Yucatan Peninsula. Mol Biotechnol 2008, 40:293-298.
  • [13]Teixeira Da Silva JA, Rashid Z, Nhut DT, Sivakumar D, Gera A, Teixeira Souza M Jr, Tennant PF: Papaya (Carica papaya L.) Biology and Biotechnology. Tree Forestry Sci Biotechnol 2007, 1:47-73.
  • [14]Food and Agriculture Organization (FAO) FAOSTAT: FAOSTAT. http://faostat.fao.org/ webcite
  • [15]Organisation for Economic Co-operation and Development (OECD) Territorial Reviews: Yucatan, Mexico, Volume 43 of OECD Territorial review. Yucatan, Mexico: OECD Publishing; 2007:27.
  • [16]Manshardt RM: Papaya. In Biotechnology of perennial fruit crops. Edited by Hammerschlag FA, Litz RE. Wallingford: No. 8. CABI; 1992:489-511. No. 8. CABI, Wallingford
  • [17]Purseglove JW: Caricaceae. In Tropical Crops. Dicotyledons (Vol. 1). Bristol: Longmans, Green and Co; 1968:45-51.
  • [18]Weeds PL, Chakraborty S, Fernandes CD, D’A Charchar MJ, Ramesh CR, Kexian Y, Kelemu S: Genetic diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at centers of origin and utilization. Phytopathology 2003, 93:176-185.
  • [19]Taylor JW, Geiser DM, Burt A, Koufopanou V: The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev 1999, 12:126.
  • [20]Butlin RK: Population genomics and speciation. Genetica 2008, 138:409-418.
  • [21]Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 2010, 5:1-8.
  • [22]Bruns TD, Shefferson RP: Evolutionary studies of ectomycorrhizal fungi: recent advance and future directions. Can J Bot 2004, 82:1122-1132.
  • [23]Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR: A polyphasic approach for studying Colletotrichum. Fungal Divers 2009, 39:183-204.
  • [24]Crouch JA, Clarke B, Hillman B: What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 2009, 101:648-656.
  • [25]Damm U, Woudenberg JHC, Cannon PF, Crous PW: Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 2009, 39:45-87.
  • [26]Damm U, Cannon PF, Woudenberg JH, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW: The Colletotrichum boninense species complex. Stud Mycol 2012, 73:1-36.
  • [27]Damm U, Cannon PF, Woudenberg JH, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW: The Colletotrichum boninense species complex. Stud Mycol 2012, 73:37-113.
  • [28]Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD: Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers 2009, 39:89-109.
  • [29]McDermott JM, McDonald BA: Gene flow in plant pathosystems. Ann Rev Phytopathol 1993, 31:353-373.
  • [30]McDonald BA: The population genetics of fungi: Tools and techniques. Phytopathology 1997, 87:448-453.
  • [31]McDonald BA, Linde C: Pathogen population genetics, evolutionary potential and durable resistance. Ann Rev Phytopathol 2002, 40:349-379.
  • [32]McDonald BA: Population genetics of plant pathogens. The Plant Health Instructor 2004.
  • [33]Nei M: Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 1973, 70:3321-3323.
  • [34]Nei M, Tajima F: DNA polymorphism detectable by restriction endonucleases. Genetics 1981, 97:145-163.
  • [35]Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000, 405:907-913.
  • [36]Barton NH: Evolution. Cold Spring Harbor Press: Cold Spring Harbor; 2007:452-455.
  • [37]Hedrick PW: Genetics of populations. 2nd edition. Boston: Jones and Bartlett; 2000.
  • [38]White TJ, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Edited by Innis MA, Gelfand DH, Sninsky JJ, White TJ. New York, USA: Academic Press; 1990:315-322.
  • [39]Glass NL, Donaldson GC: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995, 1995(61):1323-1330.
  • [40]Templeton MD, Rikkerink EHA, Solon SL, Crowhurst RN: Cloning and Molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 1992, 122:225-230.
  • [41]Carbone I, Kohn LM: A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91:553-556.
  • [42]Edgar R: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113. BioMed Central Full Text
  • [43]Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R: DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-2497.
  • [44]Librado P, Rozas J: DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics Applications Note 2009, 25:1451-1452.
  • [45]Excoffier LG, Laval S, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 2005, 1:47-50.
  • [46]Salzburger W, Ewing GB, Von Haeseler A: The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 2011, 20:1952-1963.
  • [47]Peakall R, Smouse PE: Genalex 6: Genetic analysis in Excel-Population genetic software for teaching and research. Mol Ecol Notes 2006, 6:288-295.
  • [48]Hudson RR, Boos DD, Kaplan NL: A statistical test for detecting geographic subdivision. Mol Biol Evol 1992, 9:138-151.
  • [49]Hudson RR: A new statistic for detecting genetic differentiation. Genetics 2000, 155:2011-2014.
  • [50]Vincze T, Posfai J, Roberts RJ: NEBcutter: A program to cleave DNA with restriction enzymes. Nuc Acid Res 2003, 31:3688-3691.
  • [51]Ramdeen S, Rampersad SN: Intraspecific differentiation of Colletotrichum gloeosporioides sensu lato based on in silico multilocus PCR-RFLP fingerprinting. Mol Biotechnol 2012, 53:170-181.
  • [52]Wei W, Robert ED, Ing-Ming L, Yan Z: Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Sys Evol Microbiol 2007, 57:1855-1867.
  • [53]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [54]Falush D, Stephens M, Pritchard JK: Inference of population structure: Extensions to linked loci and correlated allele frequencies. Genetics 2003, 164:1567-1587.
  • [55]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 2007, 7:574-578.
  • [56]Lewontin RC: The detection of linkage disequilibrium in molecular sequence data. Genetics 1995, 140:377-388.
  • [57]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
  • [58]Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics 1993, 133:693-709.
  • [59]Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147:915-925.
  • [60]Zeng K, Fu YX, Shi S, Wu CI: Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 2006, 174:1431-1439.
  • [61]Slatkin M, Hudson RR: Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991, 129:555-562.
  • [62]Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992, 9:552-569.
  • [63]Beerli P, Felsenstein J: Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 1999, 152:763-773.
  • [64]Beerli P, Felsenstein J: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 2001, 98:4563-4568.
  文献评价指标  
  下载次数:25次 浏览次数:11次