期刊论文详细信息
BMC Evolutionary Biology
Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama
Frank Andrew Jones3  William Owen McMillan2  Eldredge Bermingham2  Ivania Cerón-Souza1 
[1] University of Puerto Rico, Rio Piedras Campus, PO BOX 23360, San Juan, 00931-3360, Puerto Rico;Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panama;Department of Botany and Plant Pathology, Oregon State University, 2070 Cordley Hall, Corvallis, OR, 97331, USA
关键词: Spatial genetic structure;    Seed dispersal;    Pollen dispersal;    Avicennia germinans;    Rhizophora mangle;   
Others  :  1140164
DOI  :  10.1186/1471-2148-12-205
 received in 2012-06-15, accepted in 2012-10-11,  发布年份 2012
PDF
【 摘 要 】

Background

Mangroves are ecologically important and highly threatened forest communities. Observational and genetic evidence has confirmed the long distance dispersal capacity of water-dispersed mangrove seeds, but less is known about the relative importance of pollen vs. seed gene flow in connecting populations. We analyzed 980 Avicennia germinans for 11 microsatellite loci and 940 Rhizophora mangle for six microsatellite loci and subsampled two non-coding cpDNA regions in order to understand population structure, and gene flow within and among four major estuaries on the Caribbean and Pacific coasts of Panama.

Results

Both species showed similar rates of outcrossing (t= 0.7 in A. germinans and 0.8 in R. mangle) and strong patterns of spatial genetic structure within estuaries, although A. germinans had greater genetic structure in nuclear and cpDNA markers (7 demes > 4 demes and Sp= 0.02 > 0.002), and much greater cpDNA diversity (Hd= 0.8 > 0.2) than R. mangle. The Central American Isthmus serves as an exceptionally strong barrier to gene flow, with high levels nuclear (FST= 0.3-0.5) and plastid (FST= 0.5-0.8) genetic differentiation observed within each species between coasts and no shared cpDNA haplotypes between species on each coast. Finally, evidence of low ratios of pollen to seed dispersal (r = −0.6 in A. germinans and 7.7 in R. mangle), coupled with the strong observed structure in nuclear and plastid DNA among most estuaries, suggests low levels of gene flow in these mangrove species.

Conclusions

We conclude that gene dispersal in mangroves is usually limited within estuaries and that coastal geomorphology and rare long distance dispersal events could also influence levels of structure.

【 授权许可】

   
2012 Cerón-Souza et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324122610223.pdf 1902KB PDF download
Figure 3. 115KB Image download
Figure 2. 101KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Twilley RR: Properties of mangrove ecosystems related to the energy signature of coastal environments. In Maximum power: The ideas and Applications of H T Odum. Edited by Hall CAS. Niwot: University Press of Colorado; 1995:43-62.
  • [2]Tomlinson PB: The botany of mangroves. New York, New York, USA: Cambridge University Press; 1986.
  • [3]Graham A: Diversification of gulf/caribbean mangrove communities through Cenozoic time. Biotropica 1995, 27:20-27.
  • [4]Graham A: Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann Missouri Bot Gard 2006, 93:325-334.
  • [5]Twilley RR, Medina E, Snedaker SC, Yañez-Arancibia A, Medina E: Biodiversity and ecosystem processes in tropical estuaries: Perspectives of mangrove ecosystems. In Functional Roles of Biodiversity: A global perspective. Edited by Mooney HA, Cushman JH, Medina E, Sala OE, Schulze ED. New York: John Wiley & Sons Ltd; 1996:327-370.
  • [6]Twilley RR: Mangrove wetlands. In Southern forested wetlands ecology and management. Edited by Messina MG, Conner WH. Boca Raton: Lewis Publishers; 1998:445-473.
  • [7]FAO: The world's mangrove 1980–2005. FAO Forestry Paper 153. Rome (Italy): Rome Food and Agriculture Organization of the United Nations; 2007.
  • [8]Ellison AM: Mangrove restoration: Do we know enough? Restor Ecol 2000, 8:219-229.
  • [9]Valiela I, Bowen JL, York JK: Mangrove forests: One of the world's threatened major tropical environments. Bioscience 2001, 51:807-815.
  • [10]Alongi DM: Present state and future of the world's mangrove forests. Environ Conserv 2002, 29:331-349.
  • [11]Alongi DM: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine Coastal Shelf Sci 2008, 76:1-13.
  • [12]Nettel A, Dodd RS: Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 2007, 61:958-971.
  • [13]Cerón-Souza I, Rivera-Ocasio E, Medina E, Jiménez JA, McMillan WO, Bermingham E: Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae). Am J Bot 2010, 97:945-957.
  • [14]Lema-Velez LF, Polania J, Urrego-Giraldo LE: Dispersión y establecimiento de las especies de mangle del río Ranchería en el periodo de máxima fructificación. Rev Acad Colomb Cienc 2003, 27:93-103.
  • [15]Davis JH: The ecology and geology role of mangroves in Florida. Papers from Tortugas lab 32. Carnegie Institute of Washington 1940, 517:305-412.
  • [16]Sengupta R, Middleton B, Yan C, Zuro M, Hartman H: Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA). Landscape Ecol 2005, 20:63-72.
  • [17]Gunn CR, Dennis JV: Tropical and temperate stranded seeds and fruits from the Gulf of Mexico. Contrib Mar Sci 1973, 17:111-121.
  • [18]Sousa WP, Kennedy PG, Mitchell BJ, Ordonez LBM: Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecol Monogr 2007, 77:53-76.
  • [19]Dick C, Hardy O, Jones F, Petit R: Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Trop Plant Biol 2008, 1:20-33.
  • [20]Jordano P: Pollen, seeds and genes: the movement ecology of plants. Heredity 2010, 105:329-330.
  • [21]Hamilton MB, Miller JR: Comparing relative rates of pollen and seed gene flow in the island model using nuclear and organelle measures of population Structure. Genetics 2002, 162:1897-1909.
  • [22]Plaziat J-C, Cavagnetto C, Koeniguer J-C, Baltzer F: History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetlands Ecol Manage 2001, 9:161-180.
  • [23]Menezes MPM, De Oliveira D, De Mello CF: Pollination of red mangrove, Rhizophora mangle, in Northern Brazil. Acta Hortic 1996, 437:431-434.
  • [24]Rathcke B, Kass L, Hunt RE: Preliminary observations on plant reproductive biology in mangrove communities on San Salvador Island, Bahamas. In Proceedings of the Sixth Symposium on the Natural History of the Bahamas. Edited by Elliott NB, Edwards DC, Godfrey PJ. San Salvador, Bahamas: Bahamian Field Station Ltd; 1996:87-96.
  • [25]Lemus-Jiménez LJ, Ramírez N: Polinización y polinizadores en la vegetación de la planicie costera de Paraguaná, estado Falcón, Venezuela. Acta Cient Venez 2003, 54:97-114.
  • [26]Sánchez-Núñez DA, Mancera-Pineda JE: Pollination and fruit set in the main neotropical mangrove species from the Southwestern Caribbean. Aquat Bot 2012,  : . In press
  • [27]Lowenfeld R, Klekowski EJ Jr: Mangrove genetics. I. Mating system and mutation rates of Rhizophora mangle in Florida and San Salvador Island, Bahamas. Int J Plant Sci 1992, 153:394-399.
  • [28]McKee KL: Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia 1995, 101:448-460.
  • [29]Rabinowitz D: Dispersal properties of mangrove propagules. Biotropica 1978, 10:47-57.
  • [30]Lovelock CE, Feller IC, McKee KL, Thompson R: Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribb J Sci 2005, 41:456-464.
  • [31]Nettel A, Dodd RS, Afzal-Rafii Z, Tovilla-Hernandez C: Genetic diversity enhanced by ancient introgression and secondary contact in East Pacific black mangroves. Mol Ecol 2008, 17:2680-2690.
  • [32]Cerón-Souza I, Toro-Perea N, Cárdenas-Henao H: Population genetic structure of Neotropical mangrove species on the Colombian Pacific coast: Avicennia germinans (Avicenniaceae). Biotropica 2005, 37:258-265.
  • [33]Loveless MD, Hamrick JL: Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 1984, 15:65-95.
  • [34]Duke N, Meynecke J, Dittmann S, Ellison A, Anger K, Berger U, Cannicci S, Diele K, Ewel K, Field C: A world without mangroves. Science 2007, 317:41-42.
  • [35]Hamrick J: Response of forest trees to global environmental changes. For Ecol Manag 2004, 197:323-335.
  • [36]Clarke P, Myerscough P: Floral biology and reproductive phenology of Avicennia marina in south-eastern Australia. Aust J Bot 1991, 39:283-293.
  • [37]Aluri J: Observations on the floral biology of certain mangroves. Proc Indian Natl Sci Acad Part B Biol Sci 1990, 56:367-374.
  • [38]Kalisz S, Nason J, Hanzawa F, Tonsor S: Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 2001, 55:1560-1568.
  • [39]Yu H, Nason JD, Ge X, Zeng J: Slatkin’s Paradox: when direct observation and realized gene flow disagree. A case study in Ficus. Mol Ecol 2010, 19:4441-4453.
  • [40]Culley TM, Weller SG, Sakai AK: The evolution of wind pollination in angiosperms. Trends Ecol Evol 2002, 17:361-369.
  • [41]Dafni A, Dukas R: Insect and wind pollination in Urginea maritima (Liliaceae). Plant Syst Evol 1986, 154:1-10.
  • [42]Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 2005, 14:689-701.
  • [43]Ennos RA: Estimating the relative rates of pollen and seed migration among plant populations. Heredity 1994, 72:250-259.
  • [44]Steele OC: Natural and anthropogenic biogeography of mangroves in the southwest Pacific. USA: University of Hawai'i; 2006. [Master Thesis]
  • [45]Duke NC: Genetic diversity, distributional barriers and rafting continents - more thoughts on the evolution of mangroves. Hydrobiologia 1995, 295:167-181.
  • [46]Duke NC, Ball MC, Ellison JC: Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol Biogeogr Lett 1998, 7:27-47.
  • [47]Coates AG, Obando JA: The geologic evolution of the Central American isthmus. In Evolution and environment in Tropical America. Edited by Jackson JBC, Budd AF, Coates AG. Chicago, Illinois, USA: University of Chicago Press; 1996:21-56.
  • [48]Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-Moreno S, Ramírez DA, Hoyos N, Wilson J, Farris D, et al.: Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geol Soc Am Bull 2012,  : . In press
  • [49]Lessios HA: The great american schism: Divergence of marine organisms after the rise of the Central American Isthmus. Annu Rev Ecol Evol Syst 2008, 39:63-91.
  • [50]Miura O, Torchin ME, Bermingham E: Molecular phylogenetics reveals differential divergence of coastal snails separated by the Isthmus of Panama. Mol Phylogen Evol 2010, 56:40-48.
  • [51]Knowlton N, Weigt LA, Solorzano LA, Mills DK, Bermingham E: Divergence in proteins, mitochondrial-DNA, and reproductive compatibility across the Isthmus of Panama. Science 1993, 260:1629-1632.
  • [52]Dick CW, Heuertz M: The complex biogeographic history of a widespread tropical tree species. Evolution 2008, 62:2760-2774.
  • [53]Novick R, Dick CW, Lemes M, Navarro C, Caccone A, Bermingham E: Genetic structure of Mesoamerican populations of big-leaf mahogany (Swietenia macrophylla) inferred by microsatellite analysis. Mol Ecol 2003, 12:1885-2.
  • [54]Austerlitz F, Mariette S, Machon N, Gouyon P-H, Godelle B: Effects of colonization processes on genetic diversity: differences between annual Plants and tree Species. Genetics 2000, 154:1309-1321.
  • [55]Woodroffe CD, Grindrod J: Mangrove biogeography: The role of Quaternary environmental and sea-level change. J Biogeogr 1991, 18:479-492.
  • [56]van der Hammen T: The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1974, 1:3-26.
  • [57]Pil MW, Boeger MRT, Muschner VC, Pie MR, Ostrensky A, Boeger WA: Postglacial north–south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Am J Bot 2011, 98:1031-1039.
  • [58]Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, et al.: Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity. Science 2003, 300:1563-1565.
  • [59]Sandoval-Castro E, Muñiz-Salazar R, Enríquez-Paredes LM, Riosmena-Rodríguez R, Dodd RS, Tovilla-Hernández C, Arredondo-García MC: Genetic population structure of red mangrove (Rhizophora mangle L.) along the northwestern coast of Mexico. Aquat Bot 2012, 99:20-26.
  • [60]Dick CW, Abdul-Salim K, Bermingham E: Molecular systematic analysis reveals cryptic Tertiary diversification of a widespread tropical rain forest tree. Am Nat 2003, 162:691-703.
  • [61]Kudoh H, Whigham DF: Microgeographic genetic structure and gene flow in Hibiscus moscheutos (Malvaceae) populations. Am J Bot 1997, 84:1285-1293.
  • [62]Ritland K: Genetic structure, diversity, and inbreeding in the mountain monkey flower (Mimulus caespitosus) of the Washington Cascades. Can J Bot 1989, 67:2017-2024.
  • [63]Nilsson C, Brown RL, Jansson R, Merritt DM: The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 2010, 85:837-858.
  • [64]Fromard F, Vega C, Proisy C: Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar Geol 2004, 208:265-280.
  • [65]Cerón-Souza I, Rivera-Ocasio E, Funk SM, McMillan WO: Development of six microsatellite loci for black mangrove (Avicennia germinans). Mol Ecol Notes 2006, 6:692-694.
  • [66]Nettel A, Rafii F, Dodd RS: Characterization of microsatellite markers for the mangrove tree Avicennia germinans L. (Avicenniaceae). Mol Ecol Notes 2005, 5:103-105.
  • [67]Rosero-Galindo C, Gaitan-Solis E, Cardenas-Henao H, Tohme J, Toro-Perea N: Polymorphic microsatellites in a mangrove species, Rhizophora mangle L (Rhizophoraceae). Mol Ecol Notes 2002, 2:281-283.
  • [68]Steffens DL, Sutter SL, Roemer SC: An alternate universal forward primer for improved automated sequencing of M13. Biotechniques 1993, 15:580-582.
  • [69]Peakall R, Smouse PE: GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006, 6:288-295.
  • [70]Weir BS: Genetic data analysis II. Sunderland, MA: Sinauer Associates, Inc.; 1996.
  • [71]Raymond M, Rousset F: GENEPOP Version 1.2.: population genetic software for exact test and ecumenicism. J Hered 1995, 86:248-249.
  • [72]Van Oosterhout C, Hutchinson WF, Willis DPM, Shipley P: MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
  • [73]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38:1358-1370.
  • [74]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:564-567.
  • [75]Chapuis M-P, Estoup A: Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007, 24:621-631.
  • [76]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [77]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164:1567-1587.
  • [78]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 2007, 7:574-578.
  • [79]Guillot G, Mortier F, Estoup A: Geneland: a computer package for landscape genetics. Mol Ecol Notes 2005, 5:712-715.
  • [80]Guillot G, Estoup A, Mortier F, Cosson JF: A Spatial Statistical Model for Landscape Genetics. Genetics 2005, 170:1261-1280.
  • [81]Gao H, Williamson S, Bustamante CD: A Markov Chain Monte Carlo approach for joint Inference of population structure and inbreeding rates from multilocus genotype data. Genetics 2007, 176:1635-1651.
  • [82]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [83]Carlsson J: Effects of microsatellite null alleles on assignment testing. J Hered 2008, 99:616-623.
  • [84]Hauser L, Seamons TR, Dauer M, Naish KA, Quinn TP: An empirical verification of population assignment methods by marking and parentage data: hatchery and wild steelhead (Oncorhynchus mykiss) in Forks Creek, Washington, USA. Mol Ecol 2006, 15:3157-3173.
  • [85]Coulon A, Guillot G, Cosson J-F, Angibault JMA, Aulagnier S, Cargelutti B, Galan M, Hewison AJM: Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 2006, 15:1669-1679.
  • [86]Hannelius U, Salmela E, Lappalainen T, Guillot G, Lindgren C, von Dobeln U, Lahermo P, Kere J: Population substructure in Finland and Sweden revealed by the use of spatial coordinates and a small number of unlinked autosomal SNPs. BMC Genet 2008, 9:54.
  • [87]Hardy OJ, Vekemans X: Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 1999, 83:145-154.
  • [88]Loiselle BA, Sork VL, Nason J, Graham C: Spatial genetic-structure of a tropical understory shrub, Psychotria Officinalis (Rubiaceae). Am J Bot 1995, 82:1420-1425.
  • [89]Hardy OJ, Vekemans X: SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2002, 2:618-620.
  • [90]Vekemans X, Hardy OJ: New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 2004, 13:921-935.
  • [91]Shaw J, Lickey EB, Schilling EE, Small RL: Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 2007, 94:275-288.
  • [92]Rozas J, Sanchez-Delbarro JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-2497.
  • [93]Bandelt HJ, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  文献评价指标  
  下载次数:27次 浏览次数:20次