期刊论文详细信息
BMC Developmental Biology
A vertebrate-conserved cis-regulatory module for targeted expression in the main hypothalamic regulatory region for the stress response
Soojin Ryu2  Luis A Castillo-Ramírez1  Patrick Lichtner2  Ulrich Herget1  Jose Arturo Gutierrez-Triana3 
[1] The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Heidelberg, Germany;Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg, D-69120, Germany;Current address: Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, D-69120, Germany
关键词: Stress response;    Zebrafish;    Cortisol;    Neurosecretory preoptic area;    Hypothalamic-pituitary-adrenal axis;    cis-regulatory module;    Evolutionarily conserved non-coding regions;    Otp;   
Others  :  1084762
DOI  :  10.1186/s12861-014-0041-x
 received in 2014-06-10, accepted in 2014-11-11,  发布年份 2014
PDF
【 摘 要 】

Background

The homeodomain transcription factor orthopedia (Otp) is an evolutionarily conserved regulator of neuronal fates. In vertebrates, Otp is necessary for the proper development of different regions of the brain and is required in the diencephalon to specify several hypothalamic cell types, including the cells that control the stress response. To understand how this widely expressed transcription factor accomplishes hypothalamus-specific functions, we performed a comprehensive screening of otp cis-regulatory regions in zebrafish.

Results

Here, we report the identification of an evolutionarily conserved vertebrate enhancer module with activity in a restricted area of the forebrain, which includes the region of the hypothalamus that controls the stress response. This region includes neurosecretory cells producing Corticotropin-releasing hormone (Crh), Oxytocin (Oxt) and Arginine vasopressin (Avp), which are key components of the stress axis. Lastly, expression of the bacterial nitroreductase gene under this specific enhancer allowed pharmacological attenuation of the stress response in zebrafish larvae.

Conclusion

Vertebrates share many cellular and molecular components of the stress response and our work identified a striking conservation at the cis-regulatory level of a key hypothalamic developmental gene. In addition, this enhancer provides a useful tool to manipulate and visualize stress-regulatory hypothalamic cells in vivo with the long-term goal of understanding the ontogeny of the stress axis in vertebrates.

【 授权许可】

   
2014 Gutierrez-Triana et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113164151192.pdf 2504KB PDF download
Figure 7. 48KB Image download
Figure 6. 134KB Image download
Figure 5. 91KB Image download
Figure 4. 256KB Image download
Figure 3. 83KB Image download
Figure 2. 95KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Simeone A: The role of Otx and Otp genes in brain development. Int J Dev Biol 2000, 44(6):669-677.
  • [2]Simeone A, D’Apice MR, Nigro V, Casanova J, Graziani F, Acampora D, Avantaggiato V: Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 1994, 13(1):83-101.
  • [3]Wang W, Lufkin T: The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 2000, 227(2):432-449.
  • [4]Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Vaccarino FM, Michaud J, Simeone A: Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 1999, 13(21):2787-2800.
  • [5]Blechman J, Borodovsky N, Eisenberg M, Nabel-Rosen H, Grimm J, Levkowitz G: Specification of hypothalamic neurons by dual regulation of the homeodomain protein Orthopedia. Development 2007, 134(24):4417-4426.
  • [6]Eaton JL, Glasgow E: Zebrafish orthopedia (otp) is required for isotocin cell development. Dev Genes Evol 2007, 217(2):149-158.
  • [7]Eaton JL, Holmqvist B, Glasgow E: Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn 2008, 237(4):995-1005.
  • [8]Goshu E, Jin H, Lovejoy J, Marion JF, Michaud JL, Fan CM: Sim2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol Endocrinol 2004, 18(5):1251-1262.
  • [9]Löhr H, Ryu S, Driever W: Zebrafish diencephalic A11-related dopaminergic neurons share a conserved transcriptional network with neuroendocrine cell lineages. Development 2009, 136(6):1007-1017.
  • [10]Michaud JL, Rosenquist T, May NR, Fan CM: Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 1998, 12(20):3264-3275.
  • [11]Ryu S, Mahler J, Acampora D, Holzschuh J, Erhardt S, Omodei D, Simeone A, Driever W: Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol 2007, 17(10):873-880.
  • [12]Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D: Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 2007, 129(7):1389-1400.
  • [13]Tessmar-Raible K: The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 2007, 18(4):492-501.
  • [14]Norris DO: Vertebrate Endocrinology. 4th edition. Elsevier Academic Press, Amsterdam, Boston; 2007.
  • [15]Decatur WA, Hall JA, Smith JJ, Li W, Sower SA: Insight from the lamprey genome: glimpsing early vertebrate development via neuroendocrine-associated genes and shared synteny of gonadotropin-releasing hormone (GnRH). Gen Comp Endocrinol 2013, 192:237-245.
  • [16]Sower SA, Freamat M, Kavanaugh SI: The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. Gen Comp Endocrinol 2009, 161(1):20-29.
  • [17]Takahashi A, Kobayashi Y, Mizusawa K: The pituitary-interrenal axis of fish: a review focusing on the lamprey and flounder. Gen Comp Endocrinol 2013, 188:54-59.
  • [18]Charmandari E, Tsigos C, Chrousos G: Endocrinology of the stress response. Annu Rev Physiol 2005, 67:259-284.
  • [19]Wendelaar Bonga SE: The stress response in fish. Physiol Rev 1997, 77(3):591-625.
  • [20]Burnstein KL, Cidlowski JA: Regulation of gene expression by glucocorticoids. Annu Rev Physiol 1989, 51:683-699.
  • [21]Leung K, Munck A: Peripheral actions of glucocorticoids. Annu Rev Physiol 1975, 37:245-272.
  • [22]Fernandes AM, Beddows E, Filippi A, Driever W: Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013, 8(9):e75002.
  • [23]Wolf A, Ryu S: Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 2013, 140(8):1762-1773.
  • [24]Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S: A genomic atlas of mouse hypothalamic development. Nat Neurosci 2010, 13(6):767-775.
  • [25]Alonso ME, Pernaute B, Crespo M, Gómez-Skarmeta JL, Manzanares M: Understanding the regulatory genome. Int J Dev Biol 2009, 53(8–10):1367-1378.
  • [26]Chatterjee S, Lufkin T: Regulatory genomics: Insights from the zebrafish. Curr Top Genet 2012, 5:1-10.
  • [27]Steenbergen PJ, Richardson MK, Champagne DL: The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35(6):1432-1451.
  • [28]Herget U, Wolf A, Wullimann MF, Ryu S: Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae. J Comp Neurol 2014, 522:1542-1564.
  • [29]Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engström PG, Fredman D, Akalin A, Caccamo M, Sealy I, Howe K, Ghislain J, Pezeron G, Mourrain P, Ellingsen S, Oates AC, Thisse C, Thisse B, Foucher I, Adolf B, Geling A, Lenhard B, Becker TS: Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res 2007, 17(5):545-555.
  • [30]Fujimoto E, Stevenson TJ, Chien CB, Bonkowsky JL: Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. Dev Biol 2011, 352(2):393-404.
  • [31]Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJ, Cooke JE, Elgar G: Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 2005, 3(1):e7.
  • [32]Frazer KA, Elnitski L, Church DM, Dubchak I, Hardison RC: Cross-species sequence comparisons: a review of methods and available resources. Genome Res 2003, 13(1):1-12.
  • [33]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [34]Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt S, Johnson N, Juettemann T, Kähäri AK, Keenan S, Kulesha E, Martin FJ, Maurel T, McLaren WM, Murphy DN, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, et al.: Ensembl 2014. Nucleic Acids Res 2014, 42(Database issue):D749-D755.
  • [35]Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, et al.: Elephant shark genome provides unique insights into gnathostome evolution. Nature 2014, 505(7482):174-179.
  • [36]Mehta TK, Ravi V, Yamasaki S, Lee AP, Lian MM, Tay BH, Tohari S, Yanai S, Tay A, Brenner S, Venkatesh B: Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci U S A 2013, 110(40):16044-16049.
  • [37]Bessa J, Tena JJ, de la Calle-Mustienes E, Fernández-Miñán A, Naranjo S, Fernández A, Montoliu L, Akalin A, Lenhard B, Casares F, Gómez-Skarmeta JL: Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev Dyn 2009, 238(9):2409-2417.
  • [38]Beretta CA, Dross N, Guiterrez-Triana JA, Ryu S, Carl M: Habenula circuit development: past, present, and future. Front Neurosci 2012, 6:51.
  • [39]Kawakami K, Shima A, Kawakami N: Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 2000, 97(21):11403-11408.
  • [40]Uhlmann T, Boeing S, Lehmbacher M, Meisterernst M: The VP16 activation domain establishes an active mediator lacking CDK8 in vivo. J Biol Chem 2007, 282(4):2163-2173.
  • [41]Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY: Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007, 236(4):1025-1035.
  • [42]Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ: Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2007, 124(3):218-229.
  • [43]Drake JA, Bird C, Nemesh J, Thomas DJ, Newton-Cheh C, Reymond A, Excoffier L, Attar H, Antonarakis SE, Dermitzakis ET, Hirschhorn JN: Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat Genet 2006, 38(2):223-227.
  • [44]Harmston N, Baresic A, Lenhard B: The mystery of extreme non-coding conservation. Philos Trans R Soc Lond B Biol Sci 2013, 368(1632):20130021.
  • [45]Nelson AC, Wardle FC: Conserved non-coding elements and cis regulation: actions speak louder than words. Development 2013, 140(7):1385-1395.
  • [46]Smith JJ, Antonacci F, Eichler EE, Amemiya CT: Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci U S A 2009, 106(27):11212-11217.
  • [47]Shimeld SM, Donoghue PC: Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 2012, 139(12):2091-2099.
  • [48]Spitz F, Furlong EE: Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012, 13(9):613-626.
  • [49]Carroll SB: Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008, 134(1):25-36.
  • [50]Prud’homme B, Gompel N, Carroll SB: Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A 2007, 104(Suppl 1):8605-8612.
  • [51]Meyer A, Van de Peer Y: From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 2005, 27(9):937-945.
  • [52]Postlethwait J, Amores A, Cresko W, Singer A, Yan YL: Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 2004, 20(10):481-490.
  • [53]Van de Peer Y, Maere S, Meyer A: The evolutionary significance of ancient genome duplications. Nat Rev Genet 2009, 10(10):725-732.
  • [54]Alsop D, Vijayan MM: Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 2008, 294(3):R711-R719.
  • [55]Lambert AM, Bonkowsky JL, Masino MA: The conserved dopaminergic diencephalospinal tract mediates vertebrate locomotor development in zebrafish larvae. J Neurosci 2012, 32(39):13488-13500.
  • [56]Westerfield M: The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th edition. University of Oregon Press, Eugene; 2000.
  • [57]Siemering KR, Golbik R, Sever R, Haseloff J: Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 1996, 6(12):1653-1663.
  • [58]Sekkali B, Tran HT, Crabbe E, De Beule C, Van Roy F, Vleminckx K: Chicken beta-globin insulator overcomes variegation of transgenes in Xenopus embryos. FASEB J 2008, 22(7):2534-2540.
  • [59]Yeh CM, Glöck M, Ryu S: An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish. PLoS One 2013, 8(11):e79406.
  文献评价指标  
  下载次数:35次 浏览次数:11次