期刊论文详细信息
BMC Neuroscience
The neuroprotective effect of post ischemic brief mild hypothermic treatment correlates with apoptosis, but not with gliosis in endothelin-1 treated rats
Yvette Michotte3  Sophie Sarre3  Ron Kooijman1  Said Hachimi-Idrissi2  An-Gaëlle Ceulemans3  Tine Zgavc3 
[1] Department of Pharmacology, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium;Critical Care Department and Cerebral Resuscitation Research Group, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium;Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
关键词: Phagocytosis;    Gliosis;    Caspase-3;    Endothelin-1;    Cerebral ischemia;    Hypothermia;   
Others  :  1141013
DOI  :  10.1186/1471-2202-13-105
 received in 2011-12-29, accepted in 2012-08-21,  发布年份 2012
PDF
【 摘 要 】

Background

Stroke remains one of the most common diseases with a serious impact on quality of life but few effective treatments exist. Mild hypothermia (33°C) is a promising neuroprotective therapy in stroke management. This study investigated whether a delayed short mild hypothermic treatment is still beneficial as neuroprotective strategy in the endothelin-1 (Et-1) rat model for a transient focal cerebral ischemia. Two hours of mild hypothermia (33°C) was induced 20, 60 or 120 minutes after Et-1 infusion. During the experiment the cerebral blood flow (CBF) was measured via Laser Doppler Flowmetry in the striatum, which represents the core of the infarct. Functional outcome and infarct volume were assessed 24 hours after the insult. In this sub-acute phase following stroke induction, the effects of the hypothermic treatment on apoptosis, phagocytosis and astrogliosis were assessed as well. Apoptosis was determined using caspase-3 immunohistochemistry, phagocytic cells were visualized by CD-68 expression and astrogliosis was studied by glial fibrillary acidic protein (GFAP) staining.

Results

Cooling could be postponed up to 1 hour after the onset of the insult without losing its positive effects on neurological deficit and infarct volume. These results correlated with the caspase-3 staining. In contrast, the increased CD-68 expression post-stroke was reduced in the core of the insult with all treatment protocols. Hypothermia also reduced the increased levels of GFAP staining, even when it was delayed up to 2 hours after the insult. The study confirmed that the induction of the hypothermia treatment in the Et-1 model does not affect the CBF.

Conclusions

These data indicate that in the Et-1 rat model, a short mild hypothermic treatment delayed for 1 hour is still neuroprotective and correlates with apoptosis. At the same time, hypothermia also establishes a lasting inhibitory effect on the activation of astrogliosis.

【 授权许可】

   
2012 Zgavc et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325182834928.pdf 1812KB PDF download
Figure 8. 107KB Image download
Figure 7. 98KB Image download
Figure 6. 51KB Image download
Figure 5. 188KB Image download
Figure 4. 85KB Image download
Figure 3. 72KB Image download
Figure 2. 86KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Candelario-Jalil E: Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 2009, 10(7):644-654.
  • [2]Lyden PD, Krieger D, Yenari M, Dietrich WD: Therapeutic hypothermia for acute stroke. Int J Stroke 2006, 1(1):9-19.
  • [3]Zhao H, Steinberg GK, Sapolsky RM: General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 2007, 27(12):1879-1894.
  • [4]Hachimi-Idrissi S, Corne L, Ebinger G, Michotte Y, Huyghens L: Mild hypothermia induced by a helmet device: a clinical feasibility study. Resuscitation 2001, 51(3):275-281.
  • [5]Liu L, Yenari MA: Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci 2007, 12:816-825.
  • [6]De Georgia MA, Krieger DW, Abou-Chebl A, Devlin TG, Jauss M, Davis SM, Koroshetz WJ, Rordorf G, Warach S: Cooling for Acute Ischemic Brain Damage (COOL AID): a feasibility trial of endovascular cooling. Neurology 2004, 63(2):312-317.
  • [7]Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD: Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke 2010, 41(10):2265-2270.
  • [8]Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM: Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model. J Cereb Blood Flow Metab 2000, 20(12):1702-1708.
  • [9]Maier CM, Ahern K, Cheng ML, Lee JE, Yenari MA, Steinberg GK: Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 1998, 29(10):2171-2180.
  • [10]Hammer MD, Krieger DW: Acute ischemic stroke: is there a role for hypothermia? Cleve Clin J Med 2002, 69(10):770. 773–774, 776–777 passim
  • [11]Marion D, Bullock MR: Current and future role of therapeutic hypothermia. J Neurotrauma 2009, 26(3):455-467.
  • [12]Schwab S, Georgiadis D, Berrouschot J, Schellinger PD, Graffagnino C, Mayer SA: Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke 2001, 32(9):2033-2035.
  • [13]Zgavc T, Ceulemans AG, Sarre S, Michotte Y, Hachimi-Idrissi S: Experimental and clinical use of therapeutic hypothermia for ischemic stroke: opportunities and limitations. Stroke Res Treat 2011, 2011:689290.
  • [14]Bell TE, Kongable GL, Steinberg GK: Mild hypothermia: an alternative to deep hypothermia for achieving neuroprotection. J Cardiovasc Nurs 1998, 13(1):34-44.
  • [15]Deng H, Han HS, Cheng D, Sun GH, Yenari MA: Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke 2003, 34(10):2495-2501.
  • [16]Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA: Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 2002, 22(10):3921-3928.
  • [17]Kelly S, Cheng D, Steinberg GK, Yenari MA: Mild hypothermia decreases GSK3beta expression following global cerebral ischemia. Neurocrit Care 2005, 2(2):212-217.
  • [18]Maier CM, Sun GH, Cheng D, Yenari MA, Chan PH, Steinberg GK: Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia. Neurobiol Dis 2002, 11(1):28-42.
  • [19]Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK: Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J Neurosurg 2001, 94(1):90-96.
  • [20]Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y: Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci 2005, 22(6):1327-1337.
  • [21]Van Hemelrijck A, Vermijlen D, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y: Effect of resuscitative mild hypothermia on glutamate and dopamine release, apoptosis and ischaemic brain damage in the endothelin-1 rat model for focal cerebral ischaemia. J Neurochem 2003, 87(1):66-75.
  • [22]Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA: Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience 2002, 114(4):1081-1090.
  • [23]Yenari MA, Zhao H, Giffard RG, Sobel RA, Sapolsky RM, Steinberg GK: Gene therapy and hypothermia for stroke treatment. Ann N Y Acad Sci 2003, 993:54-68. discussion 79–81
  • [24]Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA: Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Brain Res Mol Brain Res 2001, 95(1–2):75-85.
  • [25]Zhao H, Wang JQ, Shimohata T, Sun G, Yenari MA, Sapolsky RM, Steinberg GK: Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. J Neurosurg 2007, 107(3):636-641.
  • [26]Zhao H, Yenari MA, Sapolsky RM, Steinberg GK: Mild postischemic hypothermia prolongs the time window for gene therapy by inhibiting cytochrome C release. Stroke 2004, 35(2):572-577.
  • [27]Dietrich WD, Atkins CM, Bramlett HM: Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 2009, 26(3):301-312.
  • [28]Kollmar R, Schwab S: Hypothermia in focal ischemia: implications of experiments and experience. J Neurotrauma 2009, 26(3):377-386.
  • [29]Tang XN, Liu L, Yenari MA: Combination therapy with hypothermia for treatment of cerebral ischemia. J Neurotrauma 2009, 26(3):325-331.
  • [30]Callaway JK, Knight MJ, Watkins DJ, Beart PM, Jarrott B: Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats. Stroke 1999, 30(12):2704-2712. discussion 2712
  • [31]Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J: Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab 1993, 13(2):276-284.
  • [32]Sicard KM, Fisher M: Animal models of focal brain ischemia. Exp Transl Stroke Med 2009, 1:7. BioMed Central Full Text
  • [33]Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, Corbett D: An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 2006, 201(2):324-334.
  • [34]Clark DL, Penner M, Orellana-Jordan IM, Colbourne F: Comparison of 12, 24 and 48 h of systemic hypothermia on outcome after permanent focal ischemia in rat. Exp Neurol 2008, 212(2):386-392.
  • [35]Yanamoto H, Nagata I, Nakahara I, Tohnai N, Zhang Z, Kikuchi H: Combination of intraischemic and postischemic hypothermia provides potent and persistent neuroprotection against temporary focal ischemia in rats. Stroke 1999, 30(12):2720-2726. discussion 2726
  • [36]Schaller B, Graf R: Hypothermia and stroke: the pathophysiological background. Pathophysiology 2003, 10(1):7-35.
  • [37]Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y: Mild hypothermia causes differential, time-dependent changes in cytokine expression and gliosis following endothelin-1-induced transient focal cerebral ischemia. J Neuroinflammation 2011, 8:60. BioMed Central Full Text
  • [38]Paxinos G, Watson G: The Rat Brain in Stereotaxic Coordinates. New York: Academic; 1986.
  • [39]Bogaert L, Scheller D, Moonen J, Sarre S, Smolders I, Ebinger G, Michotte Y: Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res 2000, 887(2):266-275.
  • [40]Garcia JH, Wagner S, Liu KF, Hu XJ: Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995, 26(4):627-634. discussion 635
  • [41]Weston RM, Jones NM, Jarrott B, Callaway JK: Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury. J Cereb Blood Flow Metab 2007, 27(1):100-114.
  • [42]Durukan A, Tatlisumak T: Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007, 87(1):179-197.
  • [43]Parker JD, Thiessen JJ, Reilly R, Tong JH, Stewart DJ, Pandey AS: Human endothelin-1 clearance kinetics revealed by a radiotracer technique. J Pharmacol Exp Ther 1999, 289(1):261-265.
  • [44]Broughton BR, Reutens DC, Sobey CG: Apoptotic mechanisms after cerebral ischemia. Stroke 2009, 40(5):e331-e339.
  • [45]Chaitanya GV, Babu PP: Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res 2008, 33(11):2178-2186.
  • [46]Lee SH, Kim M, Kim YJ, Kim YA, Chi JG, Roh JK, Yoon BW: Ischemic intensity influences the distribution of delayed infarction and apoptotic cell death following transient focal cerebral ischemia in rats. Brain Res 2002, 956(1):14-23.
  • [47]Phanithi PB, Yoshida Y, Santana A, Su M, Kawamura S, Yasui N: Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain: immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology 2000, 20(4):273-282.
  • [48]Kawai N, Okauchi M, Morisaki K, Nagao S: Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats. Stroke 2000, 31(8):1982-1989. discussion 1989
  • [49]Kawamura N, Schmeichel AM, Wang Y, Schmelzer JD, Low PA: Multiple effects of hypothermia on inflammatory response following ischemia-reperfusion injury in experimental ischemic neuropathy. Exp Neurol 2006, 202(2):487-496.
  • [50]Ohta H, Terao Y, Shintani Y, Kiyota Y: Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res 2007, 57(3):424-433.
  • [51]Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM: Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007, 321(3):892-901.
  • [52]Yenari MA, Han HS: Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFkappaB). Neurochem Int 2006, 49(2):164-169.
  • [53]Zhang Z, Chopp M, Powers C: Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Brain Res 1997, 744(2):189-198.
  • [54]Webster CM, Kelly S, Koike MA, Chock VY, Giffard RG, Yenari MA: Inflammation and NFkappaB activation is decreased by hypothermia following global cerebral ischemia. Neurobiol Dis 2009, 33(2):301-312.
  • [55]Pekny M, Nilsson M: Astrocyte activation and reactive gliosis. Glia 2005, 50(4):427-434.
  • [56]Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J: Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp (Wars) 2008, 68(2):155-168.
  • [57]Zoli M, Grimaldi R, Ferrari R, Zini I, Agnati LF: Short- and long-term changes in striatal neurons and astroglia after transient forebrain ischemia in rats. Stroke 1997, 28(5):1049-1058. discussion 1059
  • [58]Cordeau P Jr, Lalancette-Hebert M, Weng YC, Kriz J: Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke 2008, 39(3):935-942.
  • [59]Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM: High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 2000, 20(7):1040-1044.
  文献评价指标  
  下载次数:12次 浏览次数:15次