期刊论文详细信息
BMC Evolutionary Biology
Colony size is linked to paternity frequency and paternity skew in yellowjacket wasps and hornets
Michael Juhl2  Chun Chien1  Kevin J Loope1 
[1] Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA;Bee Man Exterminators LLC, Olympia, WA, USA
关键词: Social evolution;    Vespa;    Dolichovespula;    Vespula;    Paternity skew;    Multiple paternity;    Polyandry;    Social insects;   
Others  :  1121719
DOI  :  10.1186/s12862-014-0277-x
 received in 2014-06-29, accepted in 2014-12-18,  发布年份 2014
PDF
【 摘 要 】

Background

The puzzle of the selective benefits of multiple mating and multiple paternity in social insects has been a major focus of research in evolutionary biology. We examine paternity in a clade of social insects, the vespine wasps (the yellowjackets and hornets), which contains species with high multiple paternity as well as species with single paternity. This group is particularly useful for comparative analyses given the wide interspecific variation in paternity traits despite similar sociobiology and ecology of the species in the genera Vespula, Dolichovespula and Vespa. We describe the paternity of 5 species of yellowjackets (Vespula spp.) and we perform a phylogenetically controlled comparative analysis of relatedness, paternity frequency, paternity skew, colony size, and nest site across 22 vespine taxa.

Results

We found moderate multiple paternity in four small-colony Vespula rufa-group species (effective paternity 1.5 – 2.1), and higher multiple paternity in the large-colony Vespula flavopilosa (effective paternity ~3.1). Our comparative analysis shows that colony size, but not nest site, predicts average intracolony relatedness. Underlying this pattern, we found that greater colony size is associated with both higher paternity frequency and reduced paternity skew.

Conclusions

Our results support hypotheses focusing on the enhancement of genetic diversity in species with large colonies, and run counter to the hypothesis that multiple paternity is adaptively maintained due to sperm limitation associated with large colonies. We confirm the patterns observed in taxonomically widespread analyses by comparing closely related species of wasps with similar ecology, behavior and social organization. The vespine wasps may be a useful group for experimental investigation of the benefits of multiple paternity in the future.

【 授权许可】

   
2014 Loope et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150213010629363.pdf 1319KB PDF download
Figure 4. 20KB Image download
Figure 7. 70KB Image download
Figure 2. 55KB Image download
Figure 1. 128KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 7.

Figure 4.

【 参考文献 】
  • [1]Ratnieks FLW, Foster KR, Wenseleers T: Conflict resolution in insect societies. Annu Rev Entomol 2006, 51:581-608.
  • [2]Boomsma JJ, Baer B, Heinze J: The evolution of male traits in social insects. Annu Rev Entomol 2005, 50:395-420.
  • [3]Boomsma JJ: Kin selection versus sexual selection: why the ends do not meet. Curr Biol 2007, 17:R673-R683.
  • [4]Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW: Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 2008, 320:1213-1216.
  • [5]Crozier RH, Fjerdingstad E: Polyandry in social Hymenoptera - disunity in diversity? Ann Zool Fenn 2001, 38:267-285.
  • [6]Crozier RH, Page RE: On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol 1985, 18:105-115.
  • [7]Boomsma JJ, Ratnieks FLW: Paternity in Eusocial Hymenoptera. Philos T Roy Soc B 1996, 351:947-975.
  • [8]Strassmann JE: The rarity of multiple mating by females in the social Hymenoptera. Insectes Soc 2001, 48:1-13.
  • [9]Hamilton WD: Kinship, recognition, disease and intelligence: constraints of social evolution. In Animal Societies: Theory and Facts. Edited by Ito Y, Brown JL, Kikkawa J. Japanese Scientific Society, Tokyo; 1987:81-102.
  • [10]Sherman PW, Seeley TD, Reeve HK: Parasites, pathogens, and polyandry in social hymenoptera. Am Nat 1988, 133:602-610.
  • [11]Schmid-Hempel P: Parasites in Social Insects. Princeton University Press, Princeton, NJ; 1998.
  • [12]Brown M, Schmid-Hempel P: The evolution of female multiple mating in social Hymenoptera. Evolution 2003, 57:2067-2081.
  • [13]Fuchs S, Moritz R: Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav Ecol Sociobiol 1998, 45:269-275.
  • [14]Jeanson R, Fewell JH, Gorelick R, Bertram SM: Emergence of increased division of labor as a function of group size. Behav Ecol Sociobiol 2007, 62:289-298.
  • [15]Robinson GE: Regulation of Division of Labor in Insect Societies. Annu Rev Entomol 1992, 37:637-665.
  • [16]Oldroyd BP, Fewell JH: Genetic diversity promotes homeostasis in insect colonies. TREE 2007, 22:408-413.
  • [17]Cole BJ: Multiple mating and the evolution of social behavior in the Hymenoptera. Behav Ecol Sociobiol 1983, 12:191-201.
  • [18]Matsuura M, Yamane S: Biology of the Vespine Wasps. Springer, Berlin; 1990.
  • [19]Greene A: Dolichovespula and Vespula. In The Social Biology of Wasps. Edited by Ross K, Matthews RW. Cornell University Press, Ithaca, NY; 1991:263-305.
  • [20]Foster KR, Ratnieks FLW: Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behav Ecol Sociobiol 2001, 50:1-8.
  • [21]Bourke AFG: Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 1999, 12:245-257.
  • [22]Jaffé R, Garcia-Gonzalez F, den SPA B, Simmons LW, Baer B: Patterns of paternity skew among polyandrous social insects: what can they tell us about the potential for sexual selection? Evolution 2012, 66:3778-3788.
  • [23]Stein KJ, Fell R: Sperm use dynamics of the baldfaced hornet (Hymenoptera: Vespidae). Environ Entomol 1996, 25:1365-1370.
  • [24]Wedell N, Gage MJ, Parker GA: Sperm competition, male prudence and sperm-limited females. TREE 2002, 17:313-320.
  • [25]Walker TN, Hughes WO: Arboreality and the evolution of disease resistance in ants. Ecol Entomol 2011, 36:588-595.
  • [26]Akre RD, Greene A, MacDonald JF, Landolt PJ, Davis HG: The Yellowjackets of America North of Mexico. United States Department of Agriculture, Washington, DC; 1980.
  • [27]Archer ME: Vespine Wasps of the World: Behavior, Ecology & Taxonomy of the Vespinae. Siri Scientific Press, Manchester, UK; 2012.
  • [28]MacDonald JF, Matthews RW, Jacobson R: Nesting biology of the yellowjacket, Vespula flavopilosa (Hymenoptera: Vespidae). J Kansas Entomol Soc 1980, 53:448-458.
  • [29]Sumner S, Hughes WOH, Pedersen JS, Boomsma JJ: Ant parasite queens revert to mating singly. Nature 2004, 428:35-36.
  • [30]Hoffman EA, Kovacs JL, Goodisman MAD: Genetic structure and breeding system in a social wasp and its social parasite. BMC Evol Biol 2008, 8:239. BioMed Central Full Text
  • [31]Daly D, Archer ME, Watts PC, Speed MP, Hughes MR, Barker FS, Jones J, Odgaard K, Kemp SJ: Polymorphic microsatellite loci for eusocial wasps (Hymenoptera: Vespidae). Mol Ecol Notes 2002, 2:273-275.
  • [32]Thorén PA, Paxton RJ, Estoup A: Unusually high frequency of (CT)n and (GT)n microsatellite loci in a yellowjacket wasp, Vespula rufa (L.) (Hymenoptera: Vespidae). Insect Mol Biol 1995, 4:141-148.
  • [33]Hasegawa E, Takahashi J: Microsatellite loci for genetic research in the hornet Vespa mandarinia and related species. Mol Ecol Notes 2002, 2:306-308.
  • [34]Schuelke M: An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 2000, 18:233-234.
  • [35]Jones OR, Wang J: COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 2010, 10:551-555.
  • [36]Starr CK: Sperm Competition, Kinship, and Sociality in the Aculeate Hymenoptera. In Sperm Competition and the Evolution of Animal Mating Systems. Edited by Smith R. Academic, Orlando, FL; 1984:428-459.
  • [37]Nielsen R, Tarpy DR, Reeve HK: Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol Ecol 2003, 12:3157-3164.
  • [38]Nonacs P: Measuring and using skew in the study of social behavior and evolution. Am Nat 2000, 156:577-589.
  • [39]Jaffé R: An updated guide to the study of polyandry in social insects. Sociobiology 2014, 61:1-8.
  • [40]Foster KR, Seppa P, Ratnieks FLW, Thoren P: Low paternity in the hornet Vespa crabro indicates that multiple mating by queens is derived in vespine wasps. Behav Ecol Sociobiol 1999, 46:252-257.
  • [41]Oldroyd BP, Clifton MJ, Wongsiri S, Rinderer TE, Sylvester HA, Crozier RH: Polyandry in the genus Apis, particularly Apis andreniformis. Behav Ecol Sociobiol 1997, 40:17-26.
  • [42]Cornuet J-M, Aries F: Number of sex alleles in a sample of honeybee colonies. Apidologie 1980, 11:87-93.
  • [43]Harvey PH, Pagel MD: The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford; 1991.
  • [44]Symonds MRE, Blomberg SP: A Primer on Phylogenetic Generalised Least Squares. In Modern Phylogenetic Comparative Methods. Edited by Garamsegi LZ. Heidelberg: Springer-Verlag; 2014.
  • [45]Pearse WD, Purvis A: phyloGenerator: an automated phylogeny generation tool for ecologists. Meth Ecol Evol 2013, 4:692-698.
  • [46]Perrard A, Pickett K, Villemant C, Kojima JI, Carpenter J: Phylogeny of hornets: a total evidence approach (Hymenoptera, Vespidae, Vespinae, Vespa). J Hymenoptera Res 2013, 32:1-15.
  • [47]Lopez-Osorio F, Pickett KM, Carpenter JM, Ballif BA, Agnarsson I: Phylogenetic relationships of yellowjackets inferred from nine loci (Hymenoptera: Vespidae, Vespinae, Vespula and Dolichovespula). Mol Phylogenet Evol 2014, 73:190-201.
  • [48]Katoh K: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
  • [49]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [50]Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 2002, 19:101-109.
  • [51]Garland T, Harvey PH, Ives AR: Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 1992, 41:18-32.
  • [52]Grafen A: The phylogenetic regression. Philos Trans R Soc Lond B Biol Sci 1989, 326:119-157.
  • [53]R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2014.
  • [54]Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W: caper: comparative analyses of phylogenetics and evolution in R. R Package Version 2013, 052:2.
  • [55]Felsenstein J: Phylogenies and the comparative method.Am Nat 1985, 125:1–15.
  • [56]Revell LJ: Phylogenetic signal and linear regression on species data. Meth Ecol Evol 2010, 1:319-329.
  • [57]Wenseleers T, Badcock N, Erven K, Tofilski A, Nascimento FS, Hart A, Burke T, Archer ME, Ratnieks FLW: A test of worker policing theory in an advanced eusocial wasp, Vespula rufa. Evolution 2005, 59:1306-1314.
  • [58]Ratnieks FLW: Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 1988, 132:217-236.
  • [59]Akre RD, Reed HC, Landolt PJ: Nesting biology and behavior of the blackjacket, vespula consobrina (Hymenoptera: Vespidae). J Kansas Entomol Soc 1982, 55:375-405.
  • [60]Reed HC, Akre RD: Comparative colony behavior of the forest yellowjacket, Vespula acadica (Sladen)(Hymenoptera: Vespidae).J Kansas Entomol Soc 1983, 56:581–606.
  • [61]Landolt PJ, Akre RD, Greene A: Effects of colony division on Vespula atropilosa (Sladen)(Hymenoptera: Vespidae)[Insects]. J Kansas Entomol Soc 1977, 50:135-147.
  • [62]Thurin N, Aron S: No reversion to single mating in a socially parasitic ant. J Evol Biol 2011, 24:1128-1134.
  • [63]Spradbery JP: Wasps. University of Washington Press, Seattle; 1973.
  • [64]Edwards R: Social Wasps: Their Biology and Control. Rentokil, London; 1980.
  • [65]Martin SJ, Takahashi J, Katada S: Queen condition, mating frequency, queen loss, and levels of worker reproduction in the hornets Vespa affinis and V. simillima. Ecol Entomol 2009, 34:43-49.
  • [66]Foster KR, Ratnieks FLW, Gyllenstrand N, Thoren P: Colony kin structure and male production in Dolichovespula wasps. Mol Ecol 2001, 10:1003-1010.
  • [67]Bonckaert W, Van Zweden JS, D’Ettorre P, Billen J, Wenseleers T: Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol Ecol 2011, 20:3455-3468.
  • [68]Foster KR, Ratnieks FLW: Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc R Soc Lond B 2001, 268:169-174.
  • [69]Hanna C, Cook ED, Thompson AR, Dare LE, Palaski AL, Foote D, Goodisman MAD: Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica.Biol Invasions 2013, 6:283–294.
  • [70]Bonckaert W, Vuerinckx K, Billen J, Hammond RL, Keller L, Wenseleers T: Worker policing in the German wasp Vespula germanica. Behav Ecol 2008, 19:272-278.
  • [71]Foster KR, Ratnieks FLW, Raybould A: Do hornets have zombie workers? Mol Ecol 2000, 9:735-742.
  • [72]Takahashi J, Akimoto S, Hasegawa E, Nakamura J: Queen mating frequencies and genetic relatedness between workers in the hornet Vespa ducalis (Hymenoptera: Vespidae). Appl Entomol Zool 2002, 37:481-486.
  • [73]Takahashi J: Evolutional biology in the hornet – cooperation and conflict within the colony. Nat Insects 2006, 41:9-14.
  • [74]Takahashi J, Akimoto S, Martin SJ, Tamukae M, Hasegawa E: Mating structure and male production in the giant hornet Vespa mandarinia (Hymenoptera: Vespidae). Appl Entomol Zool 2004, 39:343-349.
  • [75]Takahashi J, Inomata Y, Martin SJ: Mating structure and male production in Vespa analis and Vespa simillima (Hymenoptera: Vespidae). Entomol Sci 2007, 10:223-229.
  • [76]Archer ME: The life history and a numerical account of colonies of the social wasp, Dolichovespula norwegica (F.)(Hym., Vespinae) in England. Entomologist’s Monthly Magazine (United Kingdom) 2000, 136:1-14.
  • [77]Archer ME: A numerical account of the development of colonies of the social wasp, Dolichovespula sylvestris (Scopoli) (Hym. Vespinae) in England and overseas. Entomologist’s Monthly Magazine (United Kingdom) 2002, 138:209.
  • [78]MacDonald JF, Akre R, Hill W: Comparative biology and behavior of Vespula atropilosa and V. pensylvanica (Hymenoptera: Vespidae). Melanderia 1974, 18:1-66.
  • [79]MacDonald JF, Matthews RW: Nesting biology of the Eastern yellowjacket, Vespula maculifrons (Hymenoptera: Vespidae). J Kansas Entomol Soc 1981, 54:433-457.
  • [80]MacDonald JF, Matthews RW: Nesting biology of the southern yellowjacket, Vespula squamosa (Hymenoptera: Vespidae): social parasitism and independent founding. J Kansas Entomol Soc 1984, 57:134-151.
  • [81]Archer ME: A numerical account of successful colonies of the social wasp, Vespula rufa (L.)(Hym., Vespinae).Entomologist’s Monthly Magazine (United Kingdom) 1997, 133:205–215.
  • [82]Reed HC, Akre RD: Nesting biology of a forest yellowjacket Vespula acadica (Sladen)(Hymenoptera: Vespidae), in the Pacific Northwest. Ann Entomol Soc Am 1983, 76:582-590.
  • [83]Archer ME: The life history and colonial characteristics of the hornet, Vespa crabro L. (Hym., Vespinae). Entomologist’s Monthly Magazine (United Kingdom) 1993, 129:151-163.
  • [84]Makino S, Yamane S: Nest contents and colonial adult productivity in a common Hornet, Vespa simillima simillima SMITH, in Northern Japan (Hymenoptera, Vespidae). Jpn J Entomol 1997, 65:47-54.
  • [85]Greene A, Akre RD, Landolt PJ: The aerial yellowjacket, dolichovespula arenaria (Fab): nesting biology, reproductive production, and behavior (Hymenoptera: Vespidae). Melanderia 1976, 26:1-20.
  • [86]Keyel R: Some aspects of niche relationships among yellowjackets (Hymenoptera: Vespidae) of the northeastern United States. Ithaca, NY: Cornell University; 1983:1–180.
  • [87]Makino S: Nest structure, colony composition and productivity of Dolichovespula media media and D. saxonica nipponica in Japan (Hymenoptera, Vespidae). Kontyu 1982, 50:212-224.
  • [88]Matsuura M: Comparative biology of the five Japanese species of the genus Vespa (Hymenoptera, Vespidae). The Bulletin of the Faculty of Agriculture, Mie University 1984, 69:1-131.
  • [89]Archer ME: Taxonomy, distribution and nesting biology of species of the genus Paravespula or the Vespula vulgaris species group (Hymenoptera, Vespidae). Entomologist’s Monthly Magazine (United Kingdom) 2008, 144:5-29.
  • [90]Archer ME: An adventure into the history of a nest of the superwasp Dolichovespula media. Naturalist 2011, 136:235.
  • [91]Arca M: Caractérisation génétique et étude comportementale d’une espèce envahissante en France: Vespa velutina Lepeletier (Hymenoptera, Vespidae). Paris: l’Université Pierre et Marie Curie; 2012:1–212.
  • [92]Rome Q, Muller FJ, Touret-Alby A, Darrouzet E, Perrard A, Villemant C: Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range.J Appl Ecol. in press
  • [93]Del Re AC: compute.es: Compute Effect Sizes R package version 0.2-2. URL http://cran.r-project.org/web/packages/compute.es
  • [94]Pagel M: Inferring the historical patterns of biological evolution. Nature 1999, 401:877-884.
  • [95]Seeley TD, Tarpy DR: Queen promiscuity lowers disease within honeybee colonies. Proc R Soc Lond B 2007, 274:67-72.
  • [96]Baer BC, Schmid-Hempel P: Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 1999, 397:151-154.
  • [97]Jeanne RL: Polyethism. In The Social Biology of Wasps. Edited by Ross KG, Matthews RW. Cornell University Press, Ithaca, NY; 1991:389-425.
  • [98]O’Donnell S: Genetic effects on task performance, but not on age polyethism, in a swarm-founding eusocial wasp. Anim Behav 1998, 55:417-426.
  • [99]O’Donnell S: RAPD markers suggest genotypic effects on forager specialization in a eusocial wasp. Behav Ecol Sociobiol 1996, 38:83-88.
  • [100]Jeanne RL: The organization of work in Polybia occidentalis: costs and benefits of specialization in a social wasp. Behav Ecol Sociobiol 1986, 19:333-341.
  • [101]Jeanne RL: Social Complexity in the Hymenoptera, With Special Attention to the Wasps. In Genes, Behaviors and Evolution of Social Insects. Edited by Kikuchi T, Azuma N, Higashi S. Hokkaido University Press, Sapporo; 2003:81-130.
  • [102]Hurd C, Jeanne RL, Nordheim EV: Temporal polyethism and worker specialization in the wasp, Vespula germanica. J Insect Sci 2007, 43:1-13.
  • [103]Potter NB: A Study of the biology of the common wasp, Vespula vulgaris L., with special reference to the foraging behavior. Bristol: University of Bristol; 1964:1–162.
  • [104]Kraus FB, Neumann P, van Praagh J, Moritz RFA: Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 2004, 55:494-501.
  • [105]Mattila HR, Seeley TD: Promiscuous honeybee queens generate colonies with a critical minority of waggle-dancing foragers. Behav Ecol Sociobiol 2010, 64:875-889.
  • [106]Mattila HR, Seeley TD: Does a polyandrous honeybee queen improve through patriline diversity the activity of her colony’s scouting foragers? Behav Ecol Sociobiol 2011, 65:799-811.
  • [107]Mattila HR, Reeve HK, Smith ML: Promiscuous honey bee queens increase colony productivity by suppressing worker selfishness. Curr Biol 2012, 22:2027-2031.
  文献评价指标  
  下载次数:37次 浏览次数:14次