期刊论文详细信息
BMC Microbiology
Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil
Christopher Rensing3  Gejiao Wang1  Rui Wang4  Yujia Deng2  Dan Wang1  Rong Yao1  Liang Wang1  Jing Su1  Shixue Zheng3 
[1] State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China;Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark;Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark;Tobacco Company of Enshi, Hubei Province, Enshi 445000, Hubei, PR China
关键词: Se(VI) reduction;    iscR;    Resistance to heavy metals and metalloids;    Selenium nanoparticles (SeNPs);    Se(IV) reduction;   
Others  :  1140589
DOI  :  10.1186/s12866-014-0204-8
 received in 2014-03-19, accepted in 2014-07-18,  发布年份 2014
PDF
【 摘 要 】

Background

Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic.

Results

A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s.

Conclusions

C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction.

【 授权许可】

   
2014 Zheng et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150325051349371.pdf 3373KB PDF download
Figure 8. 35KB Image download
Figure 7. 62KB Image download
Figure 6. 27KB Image download
Figure 1. 63KB Image download
Figure 4. 72KB Image download
Figure 3. 79KB Image download
Figure 2. 50KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 1.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Winkel LH, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L: Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 2012, 46(2):571-579.
  • [2]Rayman MP: The importance of selenium to human health. Lancet 2006, 356:233-241.
  • [3]Levander OA, Burk RF: Update of human dietary standards for selenium. In Selenium: Its Molecular Biology and Role in Human Health. 2nd edition. Edited by Hatfield DL, Berry MJ, Gladyshev VN. Springer, New York; 2006:399-410.
  • [4]Combs JF Jr: Selenium in global food systems. Br J Nutr 2001, 85:517-547.
  • [5]Favre-Bonte S, Ranjard L, Colinon C, Prigent-Combaret C, Nazaret S, Cournoyer B: Freshwater selenium-methylating bacterial thiopurine methyltransferases: diversity and molecular phylogeny. Environ Microbiol 2005, 7:153-164.
  • [6]Herbel MJ, Switzer BJ, Oremland RS, Borglin SE: Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 2003, 20:587-602.
  • [7]Stolz JF, Basu P, Santini JM, Oremland RS: Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 2006, 60:107-130.
  • [8]Dowdle PR, Oremland RS: Microbial oxidation of elemental selenium in soils lurries and bacterial cultures. Environ Sci Technol 1998, 32:3749-3755.
  • [9]Sarathchandra SU, Watkinson JH: Oxidation of elemental selenium to selenite by Bacillus megaterium. Science 1981, 211:600-601.
  • [10]McCarty S, Chasteen T, Marshall M, Fall R, Bachofen R: Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds. FEMS Microbiol Lett 1993, 112:93-98.
  • [11]Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, Righetti PG: Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl Environ Microbiol 2007, 73:6854-6863.
  • [12]Dhanjal S, Cameotra SS: Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 2010, 9:52.
  • [13]Hunter WJ, Manter DK: Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 2009, 58:493-498.
  • [14]Kessi J: Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non- sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 2006, 152:731-743.
  • [15]Narasingarao P, Haggblom MM: Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 2007, 73:3519-3527.
  • [16]Turner RJ, Weiner JH, Taylor DE: Selenium metabolism in Escherichia coli. Biometals 1998, 11:223-227.
  • [17]DeMoll-Decker H, Macy JM: The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiology 1993, 160:241-247.
  • [18]Hunter WJ, Kuykendall LD: Identification and characterization of an Aeromonas salmonicida (syn Haemophilus piscium) strain that reduces selenite to elemental red selenium. Curr Microbiol 2006, 52:305-309.
  • [19]Hunter WJ, Kuykendall LD: Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 2007, 55:344-349.
  • [20]Bajaj M, Schmidt S, Winter J: Formation of Se (0) Nanoparticles by Duganella sp. and Agrobacterium sp. Isolated from Se-laden soil of North-East Punjab, India. Microb Cell Factories 2012, 11(1):64.
  • [21]Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S: Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 2004, 70(1):52-60.
  • [22]Hunter WJ: A Rhizobium selenitireducens protein showing selenite reductase activity. Curr Microbiol 2014, 68:311-316.
  • [23]Hockin SL, Gadd GM: Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 2003, 69(12):7063-7072.
  • [24]Kessi J, Hanselmann KM: Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 2004, 279(49):50662-50669.
  • [25]Hunter WJ: Pseudomonas seleniipraecipitans proteins potentially involved in selenite reduction. Curr Microbiol 2014, 69:69-74.
  • [26]Xiong JB, Li D, Li H, He M, Miller SJ, Yu L, Rensing C, Wang GJ: Genome analysis and characterization of zinc efflux systems of a highly zinc-resistant bacterium, Comamonas teststeroni S44. Res Microbiol 2011, 162:671-679.
  • [27]Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ: IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci U S A 2001, 98(26):14895-14900.
  • [28]Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ: IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 2006, 60(4):1058-1075.
  • [29]Yeo SW, Lee JH, Lee KC, Roe JH: IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol 2006, 61:206-218.
  • [30]Dobias J, Suvorova EI, Bernier-Latmani R: Role of proteins in controlling selenium nanoparticle size. Nanotechnology 2011, 22(195605):1-9.
  • [31]Wu S, Chi Q, Chen W, Tang Z, Jin Z: Sequential extraction - a new procedure for selenium of different forms in soil. Soils 2004, 36(1):92-95.
  • [32]Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R: Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 1999, 65:4734-4740.
  • [33]Di Gregorio S, Lampis S, Vallini G: Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 2005, 31:233-241.
  • [34]Rother M: Selenium Metabolism in Prokaryotes. In Selenium: its Molecular Biology and Role in Human Health. Third edition. Edited by Hatfield DL, Berry MJ, Gladyshev VN. Springer Science+Business Media, LLC, New York; 2012:457-470.
  • [35]Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS: A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci U S A 2011, 108(33):13480-13485.
  • [36]Ridley H, Watts CA, Richardson DJ, Butler CS: Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl Environ Microbiol 2006, 72(8):5173-5180.
  • [37]Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY: Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 2007, 73:1914-1920.
  • [38]Dridge EJ, Watts CA, Jepson BJN, Line K, Santini JM, Richardson DJ, Butler CS: Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy. Biochem J 2007, 408:19-28.
  • [39]Krafft T, Bowen A, Theis F, Macy JM: Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq 2000, 10:365-377.
  • [40]Kuroda M, Yamashita M, Miwa E, Imao K, Noriyuki F, Ono H, Nagano K, Sei K, Ike M: Molecular cloning and characterization of the srdBCA operon, encoding the respiratory selenate reductase complex, from the selenate-reducing bacterium Bacillus selenatarsenatis SF-1. J Bacteriol 2011, 193:2141-2148.
  • [41]Ayala-Castro C, Saini A, Outten FW: Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 2008, 72(1):110-125.
  • [42]Giel JL, Nesbit AD, Mettert EL, Fleischhacker AS, Wanta BT, Kiley PJ: Regulation of iron–sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe–2S]–IscR in Escherichia coli. Mol Microbiol 2013, 87(3):478-492.
  • [43]Romsang A, Duang-Nkern J, Leesukon P, Saninjuk K, Vattanaviboon P, Mongkolsuk S: The Iron-Sulphur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa. PLoS One 2014, 9(1):e86763.
  • [44]Shepard W, Soutourina O, Courtois E, England P, Haouz A, Martin-Verstraete I: Insights into the Rrf2 repressor family–the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J 2011, 278:2689-2701.
  • [45]Fleischhacker AS, Stubna A, Hsueh KL, Guo Y, Teter SJ, Rose JC, Brunold TC, Markley JL, Münck E, Kiley PJ: Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 2012, 51:4453-4462.
  • [46]Rajagopalan S, Teter SJ, Zwart PH, Brennan RG, Phillips KJ, Kiley PJ: Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol 2013, 20:740-749.
  • [47]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [48]Binks PR, French CE, Nicklin S, Bruce NC: Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 1996, 62:1214-1219.
  • [49]Li J, Wang Q, Zhang SZ, Qin D, Wang GJ: Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil. Int Biodeterior Biodegradation 2013, 76:76-80.
  • [50]Weeger W, Lievremont D, Perret M, Lagarde F, Hubert JC, Leroy M, Lett MC: Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 1999, 12:141-149.
  • [51]Thein M, Sauer G, Paramasivam N, Grin I, Linke D: Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 2010, 9:6135-6147.
  • [52]Larsen RA, Wilson MM, Guss AM: Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 2002, 178:193-201.
  • [53]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  文献评价指标  
  下载次数:37次 浏览次数:0次