期刊论文详细信息
BMC Systems Biology
GraTeLPy: graph-theoretic linear stability analysis
Maya Mincheva2  Matthew Hartley1  Georg R Walther1 
[1] Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, UK;Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA
关键词: Parameter-free model discrimination;    Oscillations;    Turing instability;    Multistability;    Bipartite digraph;    Biochemical mechanism;   
Others  :  1141339
DOI  :  10.1186/1752-0509-8-22
 received in 2013-09-09, accepted in 2014-02-14,  发布年份 2014
PDF
【 摘 要 】

Background

A biochemical mechanism with mass action kinetics can be represented as a directed bipartite graph (bipartite digraph), and modeled by a system of differential equations. If the differential equations (DE) model can give rise to some instability such as multistability or Turing instability, then the bipartite digraph contains a structure referred to as a critical fragment. In some cases the existence of a critical fragment indicates that the DE model can display oscillations for some parameter values. We have implemented a graph-theoretic method that identifies the critical fragments of the bipartite digraph of a biochemical mechanism.

Results

GraTeLPy lists all critical fragments of the bipartite digraph of a given biochemical mechanism, thus enabling a preliminary analysis on the potential of a biochemical mechanism for some instability based on its topological structure. The correctness of the implementation is supported by multiple examples. The code is implemented in Python, relies on open software, and is available under the GNU General Public License.

Conclusions

GraTeLPy can be used by researchers to test large biochemical mechanisms with mass action kinetics for their capacity for multistability, oscillations and Turing instability.

【 授权许可】

   
2014 Walther et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327024222799.pdf 1221KB PDF download
Figure 12. 96KB Image download
Figure 11. 46KB Image download
Figure 10. 35KB Image download
Figure 9. 41KB Image download
Figure 8. 32KB Image download
Figure 7. 42KB Image download
Figure 6. 32KB Image download
Figure 5. 27KB Image download
Figure 4. 27KB Image download
Figure 3. 60KB Image download
Figure 2. 34KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Kuznetsov Y: Elements of Applied Bifurcation Theory, Volume 112. New York: Springer; 1998.
  • [2]Craciun G, Feinberg M: Multiple equilibria in complex chemical reaction networks. II. SIAM J Appl Math 2006, 66(4):1321-1338.
  • [3]Mincheva M, Roussel MR: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. J Math Biol 2007, 55:61-86.
  • [4]Mincheva M, Roussel MR: A graph-theoretic method for detecting potential Turing bifurcations. J Chem Phys 2006, 125(20):204102.
  • [5]Markevich NI, Hoek JB, Kholodenko BN: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 2004, 164(3):353-359.
  • [6]Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A: Multistability in the lactose utilization network of Escherichia coli. Nature 2004, 427(6976):737-740.
  • [7]Smolen P, Baxter DA, Byrne JH: Modeling circadian oscillations with interlocking positive and negative feedback loops. J Neurosci 2001, 21(17):6644-6656.
  • [8]Murray J: Mathematical Biology, Volume 2. New York: Springer; 2002.
  • [9]Feinberg M: Chemical reaction network structure and the stability of complex isothermal reactors. I. Chem Eng Sci 1987, 42(10):2229-2268.
  • [10]Ellison P, Feinberg M, Ji H: Chemical Reaction Network Toolbox. Available online at http://www.crnt.osu.edu/CRNTWin webcite 2011
  • [11]Feinberg M: Chemical reaction network structure and the stability of complex isothermal reactors–II. Multiple steady states for networks with deficiency one. Chem Eng Sci 1988, 43:1-25.
  • [12]Ellison P, Feinberg M: How catalytic mechanisms reveal themselves in multiple steady-state data. I. J Mol Catal A-Chem 2000, 154(1–2):155-167.
  • [13]Craciun G, Feinberg M: Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J Appl Math 2005, 65(5):1526-1546.
  • [14]Ji H: Uniqueness of equilibria for complex chemical reaction networks. PhD thesis. Mathematics, Ohio State University; 2011
  • [15]Pantea C: BioNetX. Available online at http://bionetx.uwbacter.org/ webcite 2010
  • [16]Banaji M, Donnell P, Marginean A, Pantea C: CoNtRol-Chemical reaction network analysis tool. Available online at http://math.wvu.edu/~cpantea/ webcite 2013
  • [17]Banaji M, Craciun G: Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Comm Math Sci 2009, 7(4):867-900.
  • [18]Banaji M, Craciun G: Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Adv Appl Math 2010, 44(2):168-184.
  • [19]Pantea C, Craciun G: Computational methods for analyzing bistability in biochemical reaction networks. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium. Paris: IEEE; 2010:549-552.
  • [20]Pantea C, Koeppl H, Craciun G: Global injectivity and multiple equilibria in uni-and bi-molecular reaction networks. Discr Cont Dyn Syst B 2012, 17:2153-3170.
  • [21]Banaji M, Pantea C: Some results on injectivity and multistationarity in chemical reaction networks. Available on http://arxiv.org/pdf/1309.6771v2.pdf webcite 2013
  • [22]Volpert A, Ivanova A: Mathematical models in chemical kinetics. In Mathematical modeling (Russian). Nauka, Moscow; 1987:57-102.
  • [23]Harary F: Graph Theory. Reading, MA: Addison-Wesley; 1969.
  • [24]Tyson J: Classification of instabilities in chemical reaction systems. J Chem Phys 1975, 62(3):1010-1015.
  • [25]Conway ED: Diffusion and Predator-Prey Interaction: Pattern in Closed Systems, Volume 101. Boston: Pitman; 1984.
  • [26]Johnson D: Finding all the elementary circuits of a directed graph. SIAM J Comput 1975, 4:77-84.
  • [27]Hagberg AA, Schult DA, Swart PJ: Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008). Pasadena: 7th Annual Python in Science Conference; 2008:11-15.
  • [28]Zhang Y, Abu-Khzam FN, Baldwin NE, Chesler EJ, Langston MA, Samatova NF: Genome-scale computational approaches to memory-intensive applications in systems biology. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference. Washington, DC: IEEE Computer Society; 2005:12-12.
  • [29]Python Software Foundation: Python Language Reference, Version 2.7. Available at http://www.python.org webcite 2010
  • [30]Hunter JD: Matplotlib: A 2D graphics environment. Comput Sci Eng 2007, 9(3):90-95.
  • [31]Goldstein B, Maevsky A: Critical switch of the metabolic fluxes by phosphofructo-2-kinase: fructose-2, 6-bisphosphatase. A kinetic model. FEBS Lett 2002, 532(3):295-299.
  • [32]Goryachev A, Pokhilko A: Dynamics of Cdc42 network embodies a turing-type mechanism of yeast cell polarity. FEBS Lett 2008, 582(10):1437-1443.
  • [33]Conradi C, Flockerzi D, Raisch J: Multistationarity in the activation of a MAPK: Parametrizing the relevant region in parameter space. Math Biosci 2008, 211:105-131.
  • [34]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, the SBML Forum: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19(4):524-531.
  • [35]Holmes WR: An efficient, nonlinear stability analysis for detecting pattern formation in reaction diffusion systems. Bull Math Biol 2014, 76:157-183.
  • [36]Walther GR, Marée AF, Edelstein-Keshet L, Grieneisen VA: Deterministic versus stochastic cell polarisation through wave-pinning. Bull Math Biol 2012, 74(11):2570-2599.
  • [37]Mincheva M, Craciun G: Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks. Proc IEEE 2008, 96(8):1281-1291.
  • [38]Karlebach G, Shamir R: Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Bio 2008, 9(10):770-780.
  文献评价指标  
  下载次数:223次 浏览次数:60次