期刊论文详细信息
BMC Nephrology
Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors
Olivier Christophe Barbier2  Rafael Rodríguez-Muñoz4  Laura Arreola-Mendoza1  Eduardo Molina-Jijón4  José Pedraza-Chaverri3  Mitzi Paola Santoyo-Sánchez2 
[1]Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Mexico City, México
[2]Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
[3]Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
[4]Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
关键词: Losartan;    Angiotensin II type 1 receptor;    Cubilin;    Megalin;    Endocytosis;    Subchronic exposure;    Cadmium;   
Others  :  1082828
DOI  :  10.1186/1471-2369-14-211
 received in 2013-06-20, accepted in 2013-10-01,  发布年份 2013
PDF
【 摘 要 】

Background

Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria.

Methods

Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5–8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant.

Results

Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased cubilin protein levels in proximal tubule cells whereas LOS-treatment restored cubilin levels and suppressed Kim-1 expression.

Conclusion

LOS treatment decreased microalbuminuria induced by Cd apparently through a cubilin receptor-dependent mechanism but independent of megalin.

【 授权许可】

   
2013 Santoyo-Sánchez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224183438470.pdf 2569KB PDF download
Figure 6. 57KB Image download
Figure 5. 200KB Image download
Figure 2. 28KB Image download
Figure 3. 131KB Image download
Figure 2. 105KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 2.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]ATSDR: U.S. Toxicologycal profile for Cadmium. In Agency for Toxic Substance and Disease Registry. Atlanta: GA: Department of Health and Human Sevices, Public Health Service, Centers for Disease control; 2012.
  • [2]Rzigalinski BA, Strobl JS: Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 2009, 238(3):280-288.
  • [3]Storelli MM, Marcotrigiano GO: Consumption of bivalve molluscs in Italy: estimated intake of cadmium and lead. Food Addit Contam 2001, 18(4):303-307.
  • [4]Satarug S, Moore MR: Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 2004, 112(10):1099-1103.
  • [5]Reeves PG, Vanderpool RA: Cadmium burden of men and women who report regular consumption of confectionery sunflower kernels containing a natural abundance of cadmium. Environ Health Perspect 1997, 105(10):1098-1104.
  • [6]Vahter M, Berglund M, Nermell B, Akesson A: Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol Appl Pharmacol 1996, 136(2):332-341.
  • [7]Jarup L, Akesson A: Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 2009, 238(3):201-208.
  • [8]Dorian C, Gattone VH 2nd, Klaasen CD: Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules–A light microscopic autoradiography study with 109CdMT. Toxicol Appl Pharmacol 1992, 114(2):173-181.
  • [9]Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P: Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 2005, 99(4):105-110.
  • [10]Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V: Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 2011, 204(1):38-42.
  • [11]Thevenod F: Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 2003, 93(4):87-93.
  • [12]Klaassen CD, Liu J, Choudhuri S: Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 1999, 39:267-294.
  • [13]Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M: Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health 1998, 24(Suppl 1):1-51.
  • [14]Gena P, Calamita G, Guggino WB: Cadmium impairs albumin reabsorption by down-regulating megalin and ClC5 channels in renal proximal tubule cells. Environ Health Perspect 2010, 118(11):1551-1556.
  • [15]Abouhamed M, Wolff NA, Lee WK, Smith CP, Thevenod F: Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 2007, 293(3):F705-F712.
  • [16]Choi JS, Kim KR, Ahn DW, Park YS: Cadmium inhibits albumin endocytosis in opossum kidney epithelial cells. Toxicol Appl Pharmacol 1999, 161(2):146-152.
  • [17]Gorriz JL, Martinez-Castelao A: Proteinuria: detection and role in native renal disease progression. Transplant Rev (Orlando) 2012, 26(1):3-13.
  • [18]Hoyer JR, Seiler MW: Pathophysiology of Tamm-Horsfall protein. Kidney Int 1979, 16(3):279-289.
  • [19]Thakker RV: The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis. Curr Opin Nephrol Hypertens 1998, 7(4):385-388.
  • [20]Birn H, Christensen EI: Renal albumin absorption in physiology and pathology. Kidney Int 2006, 69(3):440-449.
  • [21]Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JO, Otto A, Christensen EI, et al.: Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999, 155(4):1361-1370.
  • [22]Christensen EI, Birn H: Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 2001, 280(4):F562-F573.
  • [23]Marzolo MP, Farfan P: New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res 2011, 44(1):89-105.
  • [24]Bansal A, Gierasch LM: The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 1991, 67(6):1195-1201.
  • [25]Christensen EI, Birn H, Storm T, Weyer K, Nielsen R: Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 2012, 27(4):223-236.
  • [26]Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R: Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 2010, 21(11):1859-1867.
  • [27]Navar LG: The intrarenal renin-angiotensin system in hypertension. Kidney Int 2004, 65(4):1522-1532.
  • [28]Kobori H, Nangaku M, Navar LG, Nishiyama A: The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007, 59(3):251-287.
  • [29]Galle J: Reduction of proteinuria with angiotensin receptor blockers. Nat Clin Pract Cardiovasc Med 2008, 5(Suppl 1):S36-S43.
  • [30]Carter B, Hunsicker L, Lewis S, Orland B, Rodby R: Emerging trends for prevention and treatment of diabetic nephropathy: blockade of the RAAS and BP control. Evid-Based Approach 2004, 10:12-17.
  • [31]Tojo A, Onozato ML, Kurihara H, Sakai T, Goto A, Fujita T: Angiotensin II blockade restores albumin reabsorption in the proximal tubules of diabetic rats. Hypertens Res 2003, 26(5):413-419.
  • [32]Hosojima M, Sato H, Yamamoto K, Kaseda R, Soma T, Kobayashi A, Suzuki A, Kabasawa H, Takeyama A, Ikuyama K, et al.: Regulation of megalin expression in cultured proximal tubule cells by angiotensin II type 1A receptor- and insulin-mediated signaling cross talk. Endocrinology 2009, 150(2):871-878.
  • [33]Davalli P, Carpene E, Astancolle S, Viviani R, Corti A: Cadmium induction of renal and hepatic ornithine decarboxylase activity in the rat. Effects of sex hormones and involvement of the renin-angiotensin system. Biochem Pharmacol 1992, 44(4):721-726.
  • [34]Varoni MV, Palomba D, Macciotta NP, Antuofermo E, Deiana G, Baralla E, Anania V, Demontis MP: Brain renin-angiotensin system modifies the blood pressure response to intracerebroventricular cadmium in rats. Drug Chem Toxicol 2010, 33(3):302-309.
  • [35]Lall SB, Peshin SS, Gulati K, Khattar S, Das N, Seth SD: Involvement of renin-angiotensin system in hypertensive effect of cadmium in rats. Indian J Exp Biol 1997, 35(4):338-391.
  • [36]Edgell K: USEPA Method Study 37 - SW-846 Method 3050 Acid Digestion of Sediments, Sludges, and Soils. In EPA Contract No 68-03-3254. Edited by EPA. United States: Environmental Protection Agency, Enviromental Monitoring Systems Laboratory; 1989:2-5.
  • [37]Gerard-Monnier D, Erdelmeier I, Regnard K, Moze-Henry N, Yadan JC, Chaudiere J: Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 1998, 11(10):1176-1183.
  • [38]Molina-Jijon E, Tapia E, Zazueta C, El Hafidi M, Zatarain-Barron ZL, Hernandez-Pando R, Medina-Campos ON, Zarco-Marquez G, Torres I, Pedraza-Chaverri J: Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radic Biol Med 2011, 51(8):1543-1557.
  • [39]Maldonado PD, Molina-Jijon E, Villeda-Hernandez J, Galvan-Arzate S, Santamaria A, Pedraza-Chaverri J: NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res 2010, 88(3):620-629.
  • [40]Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87(1):245-313.
  • [41]Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, Li M, Raggio J, Wellstein A, Chen Y, et al.: RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension 2006, 47(2):238-244.
  • [42]Wolf G, Ritz E: Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int 2005, 67(3):799-812.
  • [43]Lauwerys RR, Bernard A, Roels HA, Buchet JP, Viau C: Characterization of cadmium proteinuria in man and rat. Environ Health Perspect 1984, 54:147-152.
  • [44]Chaumont A, Nickmilder M, Dumont X, Lundh T, Skerfving S, Bernard A: Associations between proteins and heavy metals in urine at low environmental exposures: evidence of reverse causality. Toxicol Lett 2012, 210(3):345-352.
  • [45]Gekle M: Renal tubule albumin transport. Annu Rev Physiol 2005, 67:573-594.
  • [46]Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI: Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 2000, 105(10):1353-1361.
  • [47]Oroszlan M, Bieri M, Ligeti N, Farkas A, Meier B, Marti HP, Mohacsi P: Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway. Transpl Immunol 2010, 23(3):125-132.
  • [48]Prozialeck WC, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, Bernard AM, Dumont X, Bonventre JV: Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int 2007, 72(8):985-993.
  • [49]Herak-Kramberger CM, Brown D, Sabolic I: Cadmium inhibits vacuolar H(+)-ATPase and endocytosis in rat kidney cortex. Kidney Int 1998, 53(6):1713-1726.
  • [50]Ahn DW, Chung JM, Kim JY, Kim KR, Park YS: Inhibition of renal Na+/H + exchange in cadmium-intoxicated rats. Toxicol Appl Pharmacol 2005, 204(1):91-98.
  • [51]Wang L, Chen D, Cao J, Liu Z: Protective effect of N-acetylcysteine on experimental chronic cadmium nephrotoxicity in immature female rats. Hum Exp Toxicol 2009, 28(4):221-229.
  • [52]Lee WK, Thevenod F: Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 2008, 76(11):1323-1332.
  • [53]Zhou YJ, Zhang SP, Liu CW, Cai YQ: The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK(1) cells. Toxicol In Vitro 2009, 23(2):288-294.
  • [54]Thevenod F, Friedmann JM: Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J 1999, 13(13):1751-1761.
  • [55]Thijssen S, Cuypers A, Maringwa J, Smeets K, Horemans N, Lambrichts I, Van Kerkhove E: Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 2007, 236(1–2):29-41.
  • [56]Chen J, Shaikh ZA: Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol 2009, 241(1):81-89.
  • [57]Groppa MD, Ianuzzo MP, Rosales EP, Vázquez SC, Benavides MP: Cadmium modulates NADPH oxidase activity and expression in sunflower leaves. Biol Plantarum 2012, 56(1):167-171.
  • [58]Kim SM, Kim YG, Jeong KH, Lee SH, Lee TW, Ihm CG, Moon JY: Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS One 2012, 7(7):e39739.
  • [59]Caruso-Neves C, Kwon SH, Guggino WB: Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation. Proc Natl Acad Sci USA 2005, 102(48):17513-17518.
  • [60]Fouad AA, Jresat I: Captopril and telmisartan treatments attenuate cadmium-induced testicular toxicity in rats. Fundam Clin Pharmacol 2013, 27(2):152-160.
  • [61]Fouad AA, Jresat I: Protective effect of telmisartan against cadmium-induced nephrotoxicity in mice. Life Sci 2011, 89(1–2):29-35.
  • [62]Banes AK, Shaw S, Jenkins J, Redd H, Amiri F, Pollock DM, Marrero MB: Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am J Physiol Renal Physiol 2004, 286(4):F653-F659.
  文献评价指标  
  下载次数:51次 浏览次数:29次