期刊论文详细信息
BMC Medical Genetics
Epistatic study reveals two genetic interactions in blood pressure regulation
Sophie Visvikis-Siest1  Michael Y Tsai2  Gérard Siest3  Maria G Stathopoulou3  El Shamieh Said3  Ndeye Coumba Ndiaye3 
[1] Department of Internal Medicine and Geriatrics, CHU Nancy-Brabois, France;Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, 55455-0392, USA;“Cardiovascular Genetics” Research Unit, EA-4373, University of Lorraine, 30 rue Lionnois – 54000, Nancy, France
关键词: Epidemiology;    Single nucleotide polymorphism;    Epistasis;    Blood pressure;   
Others  :  1177753
DOI  :  10.1186/1471-2350-14-2
 received in 2012-06-13, accepted in 2012-12-03,  发布年份 2013
PDF
【 摘 要 】

Background

Although numerous candidate gene and genome-wide association studies have been performed on blood pressure, a small number of regulating genetic variants having a limited effect have been identified. This phenomenon can partially be explained by possible gene-gene/epistasis interactions that were little investigated so far.

Methods

We performed a pre-planned two-phase investigation: in phase 1, one hundred single nucleotide polymorphisms (SNPs) in 65 candidate genes were genotyped in 1,912 French unrelated adults in order to study their two-locus combined effects on blood pressure (BP) levels. In phase 2, the significant epistatic interactions observed in phase 1 were tested in an independent population gathering 1,755 unrelated European adults.

Results

Among the 9 genetic variants significantly associated with systolic and diastolic BP in phase 1, some may act through altering the corresponding protein levels: SNPs rs5742910 (Padjusted≤0.03) and rs6046 (Padjusted =0.044) in F7 and rs1800469 (Padjusted ≤0.036) in TGFB1; whereas some may be functional through altering the corresponding protein structure: rs1800590 (Padjusted =0.028, SE=0.088) in LPL and rs2228570 (Padjusted ≤9.48×10-4) in VDR. The two epistatic interactions found for systolic and diastolic BP in the discovery phase: VCAM1 (rs1041163) * APOB (rs1367117), and SCGB1A1 (rs3741240) * LPL (rs1800590), were tested in the replication population and we observed significant interactions on DBP. In silico analyses yielded putative functional properties of the SNPs involved in these epistatic interactions trough the alteration of corresponding protein structures.

Conclusions

These findings support the hypothesis that different pathways and then different genes may act synergistically in order to modify BP. This could highlight novel pathophysiologic mechanisms underlying hypertension.

【 授权许可】

   
2013 Ndiaye et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150504023222812.pdf 192KB PDF download
【 参考文献 】
  • [1]Hua H, Zhou S, Liu Y, Wang Z, Wan C, Li H, Chen C, Li G, Zeng C, Chen L, et al.: Relationship between the regulatory region polymorphism of human tissue kallikrein gene and essential hypertension. J Hum Hypertens 2005, 19(9):715-721.
  • [2]Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J: Global burden of hypertension: analysis of worldwide data. Lancet 2005, 365(9455):217-223.
  • [3]Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, Cupples LA, Myers RH: Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension 2000, 36(4):477-483.
  • [4]Lifton RP, Gharavi AG, Geller DS: Molecular mechanisms of human hypertension. Cell 2001, 104(4):545-556.
  • [5]Pickering GW, Wright AD, Heptinstall RH: The reversibility of malignant hypertension. Lancet 1952, 2(6742):952-956.
  • [6]Chae CU, Lee RT, Rifai N, Ridker PM: Blood pressure and inflammation in apparently healthy men. Hypertension 2001, 38(3):399-403.
  • [7]Sass C, Blanquart C, Morange PE, Pfister M, Visvikis-Siest S: Association between factor VII polymorphisms and blood pressure: the Stanislas Cohort. Hypertension 2004, 44(5):674-680.
  • [8]Savoia C, Volpe M, Alonzo A, Rossi C, Rubattu S: Natriuretic peptides and cardiovascular damage in the metabolic syndrome: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009, 118(4):231-240.
  • [9]Androulakis ES, Tousoulis D, Papageorgiou N, Tsioufis C, Kallikazaros I, Stefanadis C: Essential hypertension: is there a role for inflammatory mechanisms? Cardiol Rev 2009, 17(5):216-221.
  • [10]Sicker T, Wuchold F, Kaiser B, Glusa E: Systemic vascular effects of thrombin and thrombin receptor activating peptide in rats. Thromb Res 2001, 101(6):467-475.
  • [11]Niu W, Qi Y, Qian Y, Gao P, Zhu D: The relationship between apolipoprotein E epsilon2/epsilon3/epsilon4 polymorphisms and hypertension: a meta-analysis of six studies comprising 1812 cases and 1762 controls. Hypertens Res 2009, 32(12):1060-1066.
  • [12]Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, et al.: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478(7367):103-109.
  • [13]Harrap SB: Blood pressure genetics: time to focus. J Am Soc Hypertens 2009, 3(4):231-237.
  • [14]Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, et al.: Genome-wide association study of blood pressure and hypertension. Nat Genet 2009, 41:677-687.
  • [15]Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, et al.: Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009, 41:666-676.
  • [16]Ding K, Kullo IJ: Genome-wide association studies for atherosclerotic vascular disease and its risk factors. Circ Cardiovasc Genet 2009, 2(1):63-72.
  • [17]Thomas D: Gene-environment-wide association studies: emerging approaches. Nat Rev Genet 2010, 11(4):259-272.
  • [18]Misono M, Maeda S, Iemitsu M, Nakata Y, Otsuki T, Sugawara J, Zempo H, Yoshizawa M, Miyaki A, Kuno S, et al.: Combination of polymorphisms in the beta2-adrenergic receptor and nitric oxide synthase 3 genes increases the risk for hypertension. J Hypertens 2009, 27(7):1377-1383.
  • [19]Schiele F, De Bacquer D, Vincent-Viry M, Beisiegel U, Ehnholm C, Evans A, Kafatos A, Martins MC, Sans S, Sass C, et al.: Apolipoprotein E serum concentration and polymorphism in six European countries: the ApoEurope Project. Atherosclerosis 2000, 152(2):475-488.
  • [20]Dasberg H, Blondheim SH, Sadovsky E: An adjustable blood pressure cuff to correct errors due to variations in arm circumference. Br Heart J 1962, 24:214-220.
  • [21]Visvikis-Siest S, Siest G: The STANISLAS Cohort: a 10-year follow-up of supposed healthy families. Gene-environment interactions, reference values and evaluation of biomarkers in prevention of cardiovascular diseases. Clin Chem Lab Med 2008, 46(6):733-747.
  • [22]Cheng S, Grow MA, Pallaud C, Klitz W, Erlich HA, Visvikis S, Chen JJ, Pullinger CR, Malloy MJ, Siest G, et al.: A multilocus genotyping assay for candidate markers of cardiovascular disease risk. Genome Res 1999, 9(10):936-949.
  • [23]Sass C, Zannad F, Herbeth B, Salah D, Chapet O, Siest G, Visvikis S: Apolipoprotein E4, lipoprotein lipase C447 and angiotensin-I converting enzyme deletion alleles were not associated with increased wall thickness of carotid and femoral arteries in healthy subjects from the Stanislas cohort. Atherosclerosis 1998, 140(1):89-95.
  • [24]Zee RY, Cook NR, Cheng S, Erlich HA, Lindpaintner K, Ridker PM: Polymorphism in the beta2-adrenergic receptor and lipoprotein lipase genes as risk determinants for idiopathic venous thromboembolism: a multilocus, population-based, prospective genetic analysis. Circulation 2006, 113(18):2193-2200.
  • [25]Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002, 30(17):3894-3900.
  • [26]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [27]VanderWeele TJ: Epistatic interactions. Stat Appl Genet Mol Biol 2010, 9(1):Article 1.
  • [28]Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, et al.: The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama 2003, 289(19):2560-2572.
  • [29]Gong M, Hubner N: Molecular genetics of human hypertension. Clin Sci (Lond) 2006, 110(3):315-326.
  • [30]Silverman ES, Palmer LJ, Subramaniam V, Hallock A, Mathew S, Vallone J, Faffe DS, Shikanai T, Raby BA, Weiss ST, et al.: Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma. Am J Respir Crit Care Med 2004, 169(2):214-219.
  • [31]Salam MT, Gauderman WJ, McConnell R, Lin PC, Gilliland FD: Transforming growth factor- 1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. Am J Respir Crit Care Med 2007, 176(12):1192-1199.
  • [32]Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M, Feldman DS, Schmittgen TD, Elton TS: The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem 2007, 282(33):24262-24269.
  • [33]Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE: Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007, 81(2):405-413.
  • [34]Mailly F, Fisher RM, Nicaud V, Luong LA, Evans AE, Marques-Vidal P, Luc G, Arveiler D, Bard JM, Poirier O, et al.: Association between the LPL-D9N mutation in the lipoprotein lipase gene and plasma lipid traits in myocardial infarction survivors from the ECTIM Study. Atherosclerosis 1996, 122(1):21-28.
  • [35]Mailly F, Tugrul Y, Reymer PW, Bruin T, Seed M, Groenemeyer BF, Asplund-Carlson A, Vallance D, Winder AF, Miller GJ, et al.: A common variant in the gene for lipoprotein lipase (Asp9–>Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol 1995, 15(4):468-478.
  • [36]Chowdhury B, Mantile-Selvaggi G, Miele L, Cordella-Miele E, Zhang Z, Mukherjee AB: Lys 43 and Asp 46 in alpha-helix 3 of uteroglobin are essential for its phospholipase A2 inhibitory activity. Biochem Biophys Res Commun 2002, 295(4):877-883.
  • [37]Tietge UJ, Maugeais C, Lund-Katz S, Grass D, deBeer FC, Rader DJ: Human secretory phospholipase A2 mediates decreased plasma levels of HDL cholesterol and apoA-I in response to inflammation in human apoA-I transgenic mice. Arterioscler Thromb Vasc Biol 2002, 22(7):1213-1218.
  • [38]Hubel CA, Lyall F, Weissfeld L, Gandley RE, Roberts JM: Small low-density lipoproteins and vascular cell adhesion molecule-1 are increased in association with hyperlipidemia in preeclampsia. Metabolism 1998, 47(10):1281-1288.
  • [39]Kohara K, Tabara Y, Nakura J, Imai Y, Ohkubo T, Hata A, Soma M, Nakayama T, Umemura S, Hirawa N, et al.: Identification of hypertension-susceptibility genes and pathways by a systemic multiple candidate gene approach: the millennium genome project for hypertension. Hypertens Res 2008, 31(2):203-212.
  文献评价指标  
  下载次数:3次 浏览次数:2次