期刊论文详细信息
BMC Musculoskeletal Disorders
Characterization of GLPG0492, a selective androgen receptor modulator, in a mouse model of hindlimb immobilization
Florence Namour1  Philippe Delerive1  Philippe Clément-Lacroix1  Céline Cottereaux1  Didier Merciris1  Dominique Minet1  Marielle Auberval1  Liên Lepescheux1  Roland Blanqué1 
[1] GALAPAGOS SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
关键词: Anabolism;    Muscle wasting;    Immobilization;    Selective androgen receptor modulator;   
Others  :  1125420
DOI  :  10.1186/1471-2474-15-291
 received in 2014-02-26, accepted in 2014-08-27,  发布年份 2014
PDF
【 摘 要 】

Background

Muscle wasting is a hallmark of many chronic conditions but also of aging and results in a progressive functional decline leading ultimately to disability. Androgens, such as testosterone were proposed as therapy to counteract muscle atrophy. However, this treatment is associated with potential cardiovascular and prostate cancer risks and therefore not acceptable for long-term treatment. Selective Androgen receptor modulators (SARM) are androgen receptor ligands that induce muscle anabolism while having reduced effects in reproductive tissues. Therefore, they represent an alternative to testosterone therapy. Our objective was to demonstrate the activity of SARM molecule (GLPG0492) on a immobilization muscle atrophy mouse model as compared to testosterone propionate (TP) and to identify putative biomarkers in the plasma compartment that might be related to muscle function and potentially translated into the clinical space.

Methods

GLPG0492, a non-steroidal SARM, was evaluated and compared to TP in a mouse model of hindlimb immobilization.

Results

GLPG0492 treatment partially prevents immobilization-induced muscle atrophy with a trend to promote muscle fiber hypertrophy in a dose-dependent manner. Interestingly, GLPG0492 was found as efficacious as TP at reducing muscle loss while sparing reproductive tissues. Furthermore, gene expression studies performed on tibialis samples revealed that both GLPG0492 and TP were slowing down muscle loss by negatively interfering with major signaling pathways controlling muscle mass homeostasis. Finally, metabolomic profiling experiments using 1H-NMR led to the identification of a plasma GLPG0492 signature linked to the modulation of cellular bioenergetic processes.

Conclusions

Taken together, these results unveil the potential of GLPG0492, a non-steroidal SARM, as treatment for, at least, musculo-skeletal atrophy consecutive to coma, paralysis, or limb immobilization.

【 授权许可】

   
2014 Blanqué et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150217020729601.pdf 992KB PDF download
20140725025149399.pdf 1136KB PDF download
Figure 3. 73KB Image download
Figure 2. 101KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kamel HK: Sarcopenia and aging. Nutr Rev 2003, 61(5 Pt 1):157-167.
  • [2]Argiles JM, Busquets S, Felipe A, Lopez-Soriano FJ: Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. Int J Biochem Cell Biol 2005, 37(5):1084-1104.
  • [3]Evans WJ: Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 2010, 91(4):1123S-1127S.
  • [4]Sandri M: Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 2008, 23:160-170.
  • [5]Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL: Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. Faseb J 2007, 21(1):140-155.
  • [6]Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294(5547):1704-1708.
  • [7]Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL: Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 2001, 98(25):14440-14445.
  • [8]Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117(3):399-412.
  • [9]Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ: The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 2007, 6(5):376-385.
  • [10]Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN: Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 2007, 117(9):2486-2495.
  • [11]Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C: Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 2004, 114(8):1058-1071.
  • [12]Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA: Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 2005, 280(4):2847-2856.
  • [13]Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004, 15(3):1101-1111.
  • [14]Mordier S, Deval C, Bechet D, Tassa A, Ferrara M: Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 2000, 275(38):29900-29906.
  • [15]Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O: Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 2004, 279(39):41114-41123.
  • [16]Southgate RJ, Neill B, Prelovsek O, El-Osta A, Kamei Y, Miura S, Ezaki O, McLoughlin TJ, Zhang W, Unterman TG, Febbraio MA: FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem 2007, 282(29):21176-21186.
  • [17]Abadi A, Glover EI, Isfort RJ, Raha S, Safdar A, Yasuda N, Kaczor JJ, Melov S, Hubbard A, Qu X, Phillips SM, Tarnopolsky M: Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS One 2009, 4(8):e6518.
  • [18]Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM: Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418(6899):797-801.
  • [19]Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM: PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 2006, 103(44):16260-16265.
  • [20]Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R: The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 1996, 335(1):1-7.
  • [21]Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, Casaburi R, Bhasin S: Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab 2003, 88(4):1478-1485.
  • [22]Evans RM: The steroid and thyroid hormone receptor superfamily. Science 1988, 240(4854):889-895.
  • [23]Narayanan R, Coss CC, Yepuru M, Kearbey JD, Miller DD, Dalton JT: Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways. Mol Endocrinol 2008, 22(11):2448-2465.
  • [24]Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT: Drug insight: Testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab 2006, 2(3):146-159.
  • [25]Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT: Selective androgen receptor modulators in preclinical and clinical development. Nucl Recept Signal 2008, 6:e010.
  • [26]Nique F, Hebbe S, Triballeau N, Peixoto C, Lefrançois JM, Jary H, Alvey L, Manioc M, Housseman C, Klaassen H, Van Beeck K, Guédin D, Namour F, Minet D, Van der Aar E, Feyen J, Fletcher S, Blanqué R, Robin-Jagerschmidt C, Deprez P: Identification of a 4-(hydroxymethyl) diarylhydantoin as a selective androgen receptor modulator. Journal of medicinal chemistry 2012, 55(19):8236-8247.
  • [27]Nique F, Hebbe S, Peixoto C, Annoot D, Lefrançois JM, Duval E, Michoux L, Triballeau N, Lemoullec JM, Mollat P, Thauvin M, Prangé T, Minet D, Clément-Lacroix P, Robin-Jagerschmidt C, Fleury D, Guédin D, Deprez P: Discovery of diarylhydantoins as new selective androgen receptor modulators. J Med Chem 2012, 55(19):8225-8235.
  • [28]Okamoto T, Torii S, Machida S: Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles. J Physiol Sci 2011, 61(6):537-546.
  • [29]Delerive P, Galardi CM, Bisi JE, Nicodeme E, Goodwin B: Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription. Mol Endocrinol 2004, 18(10):2378-2387.
  • [30]Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM: A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 2012, 151(6):1319-1331.
  • [31]Midrio M: The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 2006, 98(1):1-21.
  • [32]Morey-Holton ER, Globus RK: Hindlimb unloading rodent model: technical aspects. J Appl Physiol 2002, 92(4):1367-1377.
  • [33]Frimel TN, Kapadia F, Gaidosh GS, Li Y, Walter GA, Vandenborne K: A model of muscle atrophy using cast immobilization in mice. Muscle Nerve 2005, 32(5):672-674.
  • [34]Jones A, Hwang DJ, Narayanan R, Miller DD, Dalton JT: Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy. Endocrinology 2010, 151(8):3706-3719.
  • [35]Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP: Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol 2008, 110(1–2):125-129.
  • [36]Caron AZ, Haroun S, Leblanc E, Trensz F, Guindi C, Amrani A, Grenier G: The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice. BMC Musculoskelet Disord 2011, 12:185. BioMed Central Full Text
  • [37]Machida S, Booth FW: Changes in signalling molecule levels in 10-day hindlimb immobilized rat muscles. Acta Physiol Scand 2005, 183(2):171-179.
  • [38]Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S: Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 2002, 283(1):E154-E164.
  • [39]Caron AZ, Drouin G, Desrosiers J, Trensz F, Grenier G: A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse. J Appl Physiol 2009, 106(6):2049-2059.
  • [40]Urso ML, Scrimgeour AG, Chen YW, Thompson PD, Clarkson PM: Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol 2006, 101(4):1136-1148.
  • [41]Hyatt JP, Roy RR, Baldwin KM, Edgerton VR: Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am J Physiol Cell Physiol 2003, 285(5):C1161-C1173.
  • [42]Argiles JM, Lopez-Soriano FJ: The role of cytokines in cancer cachexia. Med Res Rev 1999, 19(3):223-24843.
  • [43]Arany Z, Wagner BK, Ma Y, Chinsomboon J, Laznik D, Spiegelman BM: Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1alpha and oxidative phosphorylation. Proc Natl Acad Sci U S A 2008, 105(12):4721-4726.
  • [44]Booth FW, Seider MJ: Early change in skeletal muscle protein synthesis after limb immobilization of rats. J Appl Physiol 1979, 47:974-977.
  • [45]Busquets S, Alvarez B, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM: Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J Cell Physiol 2000, 184(3):380-384.
  • [46]Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H: Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr 2006, 136(1 Suppl):234S-236S.
  • [47]Bonetto A, Penna F, Minero VG, Reffo P, Costamagna D, Bonelli G, Baccino FM, Costelli P: Glutamine prevents myostatin hyperexpression and protein hypercatabolism induced in C2C12 myotubes by tumor necrosis factor-alpha. Amino Acids 2011, 40(2):585-594.
  • [48]Maki T, Yamamoto D, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y: Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr Res 2012, 32(9):676-683.
  • [49]Mirza KA, Pereira SL, Voss AC, Tisdale MJ: Comparison of the anticatabolic effects of leucine and Ca-β-hydroxy-β-methylbutyrate in experimental models of cancer cachexia. Nutrition 2014, 30(7–8):807-813.
  • [50]Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, Souza A, Cheng S, McCabe EL, Yang E, Shi X, Deo R, Roth FP, Asnani A, Rhee EP, Systrom DM, Semigran MJ, Vasan RS, Carr SA, Wang TJ, Sabatine MS, Clish CB, Gerszten RE: Metabolic signatures of exercise in human plasma. Sci Transl Med 2010, 2(33):33ra37.
  • [51]Vega GL, Clarenbach JJ, Dunn F, Grundy SM: Oxandrolone enhances hepatic ketogenesis in adult men. J Investig Med 2008, 56(7):920-924.
  • [52]Lehmann R, Zhao X, Weigert C, Simon P, Fehrenbach E, Fritsche J, Machann J, Schick F, Wang J, Hoene M, Schleicher ED, Häring HU, Xu G, Niess AM: Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS One 2010, 5(7):e11519.
  • [53]Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, Ulloor J, Zhang A, Eder R, Zientek H, Gordon G, Kazmi S, Sheffield-Moore M, Bhasin S: The Safety, Pharmacokinetics, and Effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci 2013, 68(1):87-95.
  • [54]Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS: The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2011, 2(3):153-161.
  • [55]Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F: Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci 2011, 69(10):1651-1667.
  • [56]Chambon C, Duteil D, Vignaud A, Ferry A, Messaddeq N, Malivindi R, Kato S, Chambon P, Metzger D: Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc Natl Acad Sci U S A 2010, 107(32):14327-14332.
  • [57]MacLean HE, Chiu WS, Notini AJ, Axell AM, Davey RA, McManus JF, Ma C, Plant DR, Lynch GS, Zajac JD: Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. Faseb J 2008, 22(8):2676-2689.
  • [58]Lee NK, Skinner JP, Zajac JD, MacLean HE: Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am J Physiol Endocrinol Metab 2011, 301(1):E172-E179.
  • [59]Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004, 119(2):285-298.
  • [60]Hunter RB, Kandarian SC: Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 2004, 114(10):1504-1511.
  • [61]Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC: Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. Faseb J 2002, 16(6):529-538.
  • [62]Moldawer LL, Svaninger G, Gelin J, Lundholm KG: Interleukin 1 and tumor necrosis factor do not regulate protein balance in skeletal muscle. Am J Physiol 1987, 253(6 Pt 1):C766-C773.
  • [63]Phillips SM, Glover EI, Rennie MJ: Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 2009, 107(3):645-654.
  • [64]Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM: Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab 2010 , 35(2):125-133.
  文献评价指标  
  下载次数:28次 浏览次数:35次