期刊论文详细信息
BMC Evolutionary Biology
Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation
Kyle Summers2  Pablo J Venegas3  Ralph A Saporito1  Adam MM Stuckert2 
[1] Department of Biology, John Carroll University, University Heights, Ohio 44118, USA;Department of Biology, East Carolina University, 1000 E. Fifth St, Greenville, NC 27858, USA;División de Herpetología-Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita N°105 Of. 202, Urb. Huertos de San Antonio, Surco, Lima, Perú
关键词: Ranitomeya imitator;    Polytypism;    Müllerian mimicry;    Dendrobatids;    Aposematism;    Alkaloids;   
Others  :  856805
DOI  :  10.1186/1471-2148-14-76
 received in 2014-01-29, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations.

Results

In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population.

Conclusions

Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research.

【 授权许可】

   
2014 Stuckert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723040657296.pdf 1296KB PDF download
53KB Image download
58KB Image download
43KB Image download
100KB Image download
【 图 表 】

【 参考文献 】
  • [1]Daly JW, Myers CW: Toxicity of Panamanian Poison Frogs (Dendrobates): Some Biological and Chemical Aspects. Science (80-) 1967, 156(970):973.
  • [2]Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA: Experimental Evidence for Aposematism in the Dendrobatid Poison Frog Oophaga pumilio. Copeia 2007, 4:1006-1011.
  • [3]Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr: An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 1994, 32:657-663.
  • [4]Garraffo HM, Caceres J, Daly JW, Spande TF: Alkaloids in Madagascan Frogs (Mantella): Pumiliotoxins, Indolizidines, Quinolizidines, and Pyrrolizidines. J Nat Prod 1993, 56:1016-1038.
  • [5]Clark VC, Raxworthy CJ, Rakotomalala V, Sierwald P, Fisher BL: Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropics. Proc Natl Acad Sci U S A 2005, 102:11617-22.
  • [6]Daly JW, Highet RJ, Myers CW: Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae) and Madagascar (Mantellinae). Toxicon 1984, 22:905-919.
  • [7]Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil RR, Silva GL, Vaira M: Alkaloids in bufonid toads (melanophryniscus): temporal and geographic determinants for two argentinian species. J Chem Ecol 2007, 33:871-87.
  • [8]Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, Baldo JD, Faivovich J: Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 2008, 52:858-70.
  • [9]Rodríguez A, Poth D, Schulz S, Vences M: Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 2011, 7:414-8.
  • [10]Saporito RA, Donnelly MA, Spande TF, Garraffo HM: A review of chemical ecology in poison frogs. Chemoecology 2012, 22:159-168.
  • [11]Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, Means DB, Noonan BP, Schargel WE, Wheeler WC: Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Am Museum Nat Hist 2006, 299:1-262.
  • [12]Brown JL, Twomey E, Amezquita A, DeSouza MB, Caldwell J, Lötters S, May RVON, Melo-sampaio PR, Mejía-vargas D, Perez-peña P, Pepper M, Poelman EH, Amézquita A, Souza MB D, Caldwell JP, Von MR, Perez- P, Sanchez-rodriguez M, Summers K: A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa 2011, 3083:1-120.
  • [13]Saporito RA, Spande TF, Martin Garraffo H, Donnelly MA: Arthropod Alkaloids in Poison Frogs: A Review of the “Dietary Hypothesis”. Heterocycles 2009, 79:277.
  • [14]Summers K, Cronin TW, Kennedy T: Variation in spectral reflectance among populations of Dendrobates pumilio, the strawberry poison frog, in the Bocas del Toro Archipelago, Panama. J Biogeogr 2003, 30:35-53.
  • [15]Sherratt TN: The evolution of Müllerian mimicry. Naturwissenschaften 2008, 95:681-95.
  • [16]Noonan BP, Comeault AA: The role of predator selection on polymorphic aposematic poison frogs. Biol Lett 2009, 5:51-54.
  • [17]Chouteau M, Angers B: The role of predators in maintaining the geographic organization of aposematic signals. Am Nat 2011, 178:810-7.
  • [18]Comeault AA, Noonan BP: Spatial variation in the fitness of divergent aposematic phenotypes of the poison frog, Dendrobates tinctorius. J Evol Biol 2011, 24:1374-9.
  • [19]Saporito RA, Donnelly MA, Jain P, Martin Garraffo H, Spande TF, Daly JW: Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 2007, 50:757-78.
  • [20]Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF: Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 2010, 73:317-21.
  • [21]Schulte R: Eine neue Dendrobates—art aus ostperu (Amphibia: Salienta: Dendrobatidae). Sauria 1986, 8:11-20.
  • [22]Symula R, Schulte R, Summers K: Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc Biol Sci 2001, 268:2415-21.
  • [23]Symula R, Schulte R, Summers K: Molecular systematics and phylogeography of Amazonian poison frogs of the genus Dendrobates. Mol Phylogenet Evol 2003, 26:452-475.
  • [24]Yeager J, Brown JL, Morales V, Cummings M, Summers K: Testing for selection on color and pattern in a mimetic radiation. Curr Zool 2012, 58:668-676.
  • [25]Twomey E, Yeager J, Brown JL, Morales V, Cummings M, Summers K: Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation. PLoS One 2013, 8:e55443.
  • [26]Chouteau M, Summers K, Morales V, Angers B: Advergence in Müllerian mimicry: the case of the poison dart frogs of Northern Peru revisited. Biol Lett 2011, 7:796-800.
  • [27]Mallet J, Gilbert LE: Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol J Linn Soc 1995, 55:159-180.
  • [28]Merrill RM, Jiggins CD: Müllerian mimicry: sharing the load reduces the legwork. Curr Biol 2009, 19:R687-9.
  • [29]Stuckert AMM, Venegas PJ, Summers K: Experimental evidence for predator learning and Müllerian mimicry in Peruvian poison frogs (Ranitomeya, Dendrobatidae). Evol Ecol 2013, 28(3):413-426.
  • [30]Schaefer H, Vences M, Veith M: Molecular phylogeny of Malagasy poison frogs, genus Mantella (Anura: Mantellidae): homoplastic evolution of colour pattern in aposematic amphibians. Org Divers Evol 2002, 2:97-105.
  • [31]Prates I, Antoniazzi MM, Sciani JM, Pimenta DC, Toledo LF, Haddad CFB, Jared C: Skin glands, poison and mimicry in dendrobatid and leptodactylid amphibians. J Morphol 2012, 273:279-90.
  • [32]Speed MP: Muellerian mimicry and the psychology of predation. Anim Behav 1993, 45:571-580.
  • [33]Rowland HM, Ihalainen E, Lindström L, Mappes J, Speed MP: Co-mimics have a mutualistic relationship despite unequal defences. Nature 2007, 448:64-7.
  • [34]Brown JL, Twomey E, Morales V, Summers K: Phytotelm size in relation to parental care and mating strategies in two species of Peruvian poison frogs. Behaviour 2008, 145:1139-1165.
  • [35]Andriamaharavo NR, Garraffo HM, Saporito RA, Daly JW, Razafindrabe CR, Andriantsiferana M, Spande TF: Roughing it: a mantellid poison frog shows greater alkaloid diversity in some disturbed habitats. J Nat Prod 2010, 73:322-30.
  • [36]Mallet J, Joron M: Evolution of Diversity in Warning Color and Mimicry: Polymorphisms, Shifting Balance, and Speciation. Annu Rev Ecol Syst 1999, 30:201-233.
  • [37]Blount JD, Speed MP, Ruxton GD, Stephens PA: Warning displays may function as honest signals of toxicity. Proc R Soc Biol Sci 2009, 276:871-877.
  • [38]Lee TJ, Speed MP, Stephens PA: Honest signaling and the uses of prey coloration. Am Nat 2011, 178:E1-9.
  • [39]Santos JC, Cannatella DC: Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci U S A 2011, 108:6175-80.
  • [40]Brower LP, Brower JVZ, Corvino JM: Plant poisons in a terrestrial food chain. Proc Natl Acad Sci U S A 1967, 57:893-898.
  • [41]Speed MP, Ruxton GD, Broom M: Automimicry and the evolution of discrete prey defences. Biol J Linn Soc 2006, 87:393-402.
  • [42]Saporito RA, Isola M, Maccachero V, Condon K, Donnelly MA: Ontogenetic scaling of poison glands in a dendrobatid poison frog. J Zool 2010, 282:238-245.
  • [43]Ruxton GD, Sherratt TN, Speed MP: Speed MP. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry 2004, 17:249.
  • [44]Daly JW, Spande TF, Garraffo HM: Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 2005, 68:1556-75.
  文献评价指标  
  下载次数:64次 浏览次数:44次