期刊论文详细信息
BMC Microbiology
Short-term responses of unicellular planktonic eukaryotes to increases in temperature and UVB radiation
Thierry Bouvier5  Helene Montanié3  Eric Fouilland5  Emilie LeFloc’h5  Amy Kirkham1  Behzad Mostajir5  Francesca Vidussi5  Jean Pascal Torréton5  Corinne Bouvier5  Yvan Bettarel5  Stephan Jacquet1  Jean Francois Ghiglione2  Marc Bouvy5  Didier Debroas4  Cécile Lepère4  Isabelle Domaizon1 
[1] INRA, UMR 42 CARRTEL, 75 avenue de Corzent, BP511, Thonon-les-bains, F-74200, France;CNRS, UMR 7621, LOMIC, Observatoire Océanologique, Avenue de Fontaulé, Banyuls/mer, F-66651, France;LIttoral ENvironnement et Sociétés (LIENSs) - UMR 6250, Université de La Rochelle, Institut du Littoral et de l’Environnement (ILE), 2 rue Olympe de Gouges, La Rochelle, 17 000, France;Clermont Université, Université Blaise Pascal, CNRS, UMR 6023, LMGE, BP 10448, Avenue des Landais, Clermont Ferrand, F-63000, France;Université Montpellier 2, UMR 5119 ECOSYM, CNRS, IRD, Ifremer, Université Montpellier 1, Place E Bataillon, cc 093, Montpellier cedex 5, 34095, France
关键词: Mediterranean lagoon;    Microcosms experiment;    UVB radiation;    Temperature;    Molecular diversity;    Small eukaryotes;   
Others  :  1221762
DOI  :  10.1186/1471-2180-12-202
 received in 2012-03-22, accepted in 2012-08-27,  发布年份 2012
PDF
【 摘 要 】

Background

Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated.

Results

We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 μm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae.

Conclusions

This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.

【 授权许可】

   
2012 Domaizon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803133819359.pdf 493KB PDF download
Figure 5. 63KB Image download
Figure 4. 58KB Image download
Figure 3. 56KB Image download
Figure 2. 62KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Caron DA, Peele ER, Lim EL, Dennett MR: Picoplankton and nanoplankton and their trophic coupling in the surface waters of the Sargasso Sea south of Bermuda. Limnol Oceanogr 1999, 44:259-272.
  • [2]Li WKW: Primary production of prochlorophytes, cyanobacteria and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 1994, 39:169-175.
  • [3]Moreira D, Lόpez-García P: The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 2002, 10:31-38.
  • [4]Šlapeta J, Moreira D, Lopez-Garcia P: Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 2006, 23(1):23-29.
  • [5]Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D: Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl Environ Microb 2006, 72:2971-2981.
  • [6]Jardillier L, Zubkov MV, Pearman J, Scanlan DJ: Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J 2010, 4:1180-1192.
  • [7]Cuvelier ML, Allen AE, Monier A, McCrow JP, Messie M, et al.: Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. PNAS 2010, 107(33):14679-14684.
  • [8]Lepère C, Domaizon I, Debroas D: Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microb 2008, 74:2940-2949.
  • [9]Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM: A method for studying protistan diversity using massively parallel sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA genes. PLoS One 2009, 4(7):e6372.
  • [10]Massana R, Unrein F, Rodriguez-Martinez R, Forn I, Lefort T, Pinhassi J, Not F: Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J 2009, 3(5):588-596.
  • [11]Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D: Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS One 2009, 4(10):e7657.
  • [12]Evans C, Archer SD, Jacquet S, Wilson WH: Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp population. Aquat Microb Ecol 2003, 30:207-219.
  • [13]Baudoux AC, Veldhuis MJW, Noordeloos AAM, Vann Noort G, Brussaard CPD: Estimates of virus-vs grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Microb Eco 2008, 52:69-82.
  • [14]Chen M, Chen F, Zhao B, Wu QL, Kong FX: Genetic diversity of eukaryotic microorganisms in Lake Taihu, a large shallow subtropical lake in China. Microb Ecol 2008, 56(3):572-583.
  • [15]Masquelier S, Foulon E, Jouenne F, Ferréol M, Brussard CPD, Vaulot D: Distribution of eukaryotic in the English Channel and North Sea in summer. J Sea Res 2011, 66:111-122.
  • [16]Petchey OL, McPhearson PT, Casey TM, Morin PJ: Environmental warming alters food-web structure and ecosystem function. Nature 1999, 402:69-72.
  • [17]Mostajir B, Sime-Ngando T, Demers S, Belzile C, et al.: Ecological implications of changes in cell size and photosynthetic capacity of marine Prymnesiophyceae induced by ultraviolet-B radiation. Mar Ecol Prog Ser 1999, 187:89-100.
  • [18]Sommaruga R, Hofer JS, Alonso-Saez L, Gasol JM: Differential Sunlight Sensitivity of Picophytoplankton from Surface Mediterranean Coastal Waters. Appl Environ Microb 2005, 71(4):2154-2157.
  • [19]Ferreyra GA, Mostajir B, Schloss IR, Chatila K, Ferrario ME, Sargian P, Roy S, Prod'homme J, Demers S: Ultraviolet-B radiation effects on the structure and function of lower trophic levels of the marine planktonic food web. Photochem Photobiol 2006, 82(4):887-897.
  • [20]Conan P, Joux F, Torréton JP, Pujo-Pay M, Rochelle-Newall E, Mari X: Impact of solar ultraviolet radiation on bacterio- and phytoplankton activity in a large coral reef lagoon (SW New Caledonia). Aquat Microb Ecol 2008, 52:83-98.
  • [21]Christensen MR, Graham MD, Vinebrooke RD, Findlay DL, Paterson MJ, Turner MA: Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biol 2006, 12(12):2316-2322.
  • [22]Vidussi F, Mostajir B, Fouilland E, Le Floc’h E, et al.: Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol Oceanogr 2011, 56(1):206-218.
  • [23]Doyle SA, Saros JE, Williamson CE: Interactive effects of temperature and nutrient limitation on the response of alpine phytoplankton growth to ultraviolet radiation. Limnol Oceanogr 2005, 50(5):1362-1367.
  • [24]Bouvy M, Bettarel Y, Bouvier C, Domaizon I, Jacquet S, LeFloc’h E, Montanié H, Mostajir B, Sime-Ngando T, Torréton JP, Vidussi F, Bouvier T: Trophic interactions between viruses, bacteria, and nanoflagellates under various nutrient conditions and simulated climate change. Environ Microbiol 2011, 13(7):1842-1857.
  • [25]Nouguier J, Mostajir B, Le Floc'h E, Vidussi F: An automatically operated system for simulating global change temperature and ultraviolet B radiation increases: application to the study of aquatic ecosystem responses in mesocosm experiments. Limnol Oceanog Methods 2007, 5:269-279.
  • [26]Goldman JC, Caron DA, Dennet MR: Regulation of gross efficiency and ammonium regeneration in bacteria by C:N ratio. Limnol Oceanogr 1987, 32:1239-1252.
  • [27]Collos Y, Gagne C, Laabir M, Vaquer A, Cecchi P, Souchu P: Nitrogenous nutrition of Alexandrium catenella (Dinophyceae) in cultures and in Thau lagoon, southern France. J Phycol 2004, 40(1):96-103.
  • [28]Jardillier L, Boucher D, Personnic S, Jacquet S, Thenot A, Sargos D, Amblard C, Debroas D: Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: Microcosm experiments. FEMS Microbiol Ecol 2005, 53(3):429-443.
  • [29]Brussard CPD, Marie D, Bratbak G: Flow cytometric detection of viruses. J. Virological methods 2000, 85:175-182.
  • [30]Pradeep RAS, Sime-Ngando T: Functional responses of prokaryotes and viruses to grazer effects and nutrient additions in freshwater microcosms. ISME J 2008, 2:498-509.
  • [31]Bonilla-Findji O, Herndl GJ, Gattuso JP, Weinbauer MG: Viral and flagellate control of prokaryotic production and community structure in Offshore Mediterranean Waters. Appl Environ Microb 2009, 75(14):4801-4812.
  • [32]Tréguer P, LeCorre P: Manuel d'analyse des sels nutritifs dans l'eau de mer. Utilisation de l'AutoAnalyser II Technicon. 2nd edition. Univ. Bretagne Occidentale, Laboratoire de Chimie marine, Brest, France; 1975.
  • [33]Boenigk J, Stadler P, Wiedlroither A, Hahn MW: Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter Cluster. Appl Environ Microb 2004, 70(10):5787-5793.
  • [34]Lefranc M, Thénot A, Lepère C, Debroas D: Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microb 2005, 71:5935-5942.
  • [35]Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR: Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. PNAS 1985, 82:6955-6959.
  • [36]Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR: Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cell. J Bacteriol 1988, 170:720-726.
  • [37]Sauret C, Christaki U, Moutsaki P, Hatzianestis I, Gogou A, Ghiglione JF: Influence of pollution history on the response of coastal bacterial and nanoeukaryote communities to crude oil and biostimulation assays. Mar Environ Res 2012, 79:70-78.
  • [38]Lopez-Garcia P, Philippe H, Gail F, Moreira D: Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. PNAS 2003, 100(2):697-702.
  • [39]Schloss PD, Handelsman J: Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microb 2005, 71(3):1501-1506.
  • [40]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Mille W, Lipman DJ: Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [41]Ludwig W, Strunk O, Westram R, Richter L, et al.: ARB: a software environment for sequence data. Nucleic Acids Res 2004, 32:1363-1371.
  • [42]Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ: Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microbiol 2001, 67(10):4399-4406.
  • [43]Chao A: Nonparametric estimation of the number of classes in a population. Scandinavian J Stat 1984, 11:265-270.
  • [44]Chao A, Lee SM: Estimating the number of classes via sample coverage. J Am Stat Assoc 1992, 87:210-217.
  • [45]Kemp PF, Aller JY: Estimating prokaryotic diversity: When are 16S rDNA libraries large enough? Limnol Oceanogr: Methods 2004, 2:114-125.
  • [46]Zemb O, Haegeman B, Delgenes JP, Lebaron P, Godon JJ: Safum: statistical analysis of SSCP fingerprints using PCA projections, dendrograms and diversity estimators. Mol Ecol Notes 2007, 7:767-770.
  • [47]Lozupone C, Knight R: UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb 2005, 71(12):8228-8235.
  • [48]ter Braak CJF: Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67:1167-1179.
  • [49]Legendre P, Legendre L: Numerical ecology. 2nd English edition Elsevier Science BV, Amsterdam; 1998.
  • [50]Not F, del Campo J, Balagué V, de Vargas C, Massana R: New Insights into the Diversity of Marine Picoeukaryotes. PLoS ONE 2009, 4:e7143.
  • [51]Shi XL, Lepère C, Scanlan DJ, Vaulot D: Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean. PLoS ONE 2011, 6(4):e18979.
  • [52]Lepère C, Masquelier S, Mangot JF, Debroas D, Domaizon I: Vertical distribution of small eukaryote diversity in lakes: a quantitative approach. The ISME Journal 2010, 4:1509-1519.
  • [53]Clarke KR, Warwick R: Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition: PRIMER-E, Plymouth, UK; 2001.
  • [54]Joint I, Donay SC, Karl DM: Will ocean acidification affect marine microbes? The ISME J 2011, 5:1-7.
  • [55]Joint I, Jordan MB: Effect of short-term exposure to UVA and UVB on potential phytoplanlton production in UK coastal waters. J Plankton Res 2008, 3052:199-210.
  • [56]Bec B, Husseini-Ratrema J, Collos Y, Souchu P, Vaquer A: Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. J Plankton Res 2005, 27(9):881-894.
  • [57]Guillou L, Alves-de Souza C, Siano R, Gonzalez H: The ecological significance of small eukaryotic parasites in marine ecosystems. Microbiol Today 2010, 92-95. http://www.sgm.ac.uk/pubs/micro_today/about.cfm webcite
  • [58]Lefèvre E, Roussel B, Amblard C, Simé-Ngando T: The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 2008, 3:2324-2333.
  • [59]Hausner G, Inglis G, Yanke LJ, Kawchuk LM, McAllister TA: Analysis of restriction fragment length polymorphisms in the ribosomal DNA of a selection of anaerobic chytrids. Can J Bot 2000, 78(7):917-927.
  • [60]Alster A, Zohary T: Interactions between the bloom-forming dinoflagellate Peridinium gatunense and the chytrid fungus Phlyctochytrium sp. Hydrobiologia 2007, 578(1):131-139.
  • [61]Ibelings B, Arnout De Bruin W, Kagami M, Rijkeboer M, Brehm M, Van D, Ibelings B, Arnout De Bruin W, Kagami M, Rijkeboer M, Brehm M, Van Donk E: Host parasite interactions between freshwater phytoplankton and chytrid fungi (chytridiomycota). J Phycol 2004, 40:437-453.
  • [62]Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ: Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microiol 2008, 10(12):3349-3365.
  • [63]Reuder J, Dameris M, Koepke P: Future UVradiation in Central Europe modeled from ozone scenarios. J Photoch Photobio B 2001, 61:94-105.
  • [64]Duguay KJ, Kliromonos JN: Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi. Applied Soil Ecol 2000, 14(2):157-164.
  文献评价指标  
  下载次数:58次 浏览次数:16次