期刊论文详细信息
BMC Microbiology
Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus
Dominique Missiakas2  Antoni PA Hendrickx1  Mark Anderson1  Yi-Hsing Chen1 
[1] Department of Microbiology, University of Chicago, Chicago, 60637, IL, USA;Department of Microbiology, University of Chicago, 920 E. 58th St, Chicago, IL, 60637, USA
关键词: Staphylococcus aureus;    Type 7 secretion;    EssB;    WXG100;    ESS;    ESAT-6 secretion;   
Others  :  1221735
DOI  :  10.1186/1471-2180-12-219
 received in 2012-07-24, accepted in 2012-09-21,  发布年份 2012
PDF
【 摘 要 】

Background

Staphylococcus aureus secretes EsxA and EsxB, two small polypeptides of the WXG100 family of proteins. Genetic analyses have shown that production and secretion of EsxA and EsxB require an intact ESAT-6 Secretion System (ESS), a cluster of genes that is conserved in many Firmicutes and encompasses esxA and esxB . Here, we characterize EssB, one of the proteins encoded by the ESS cluster. EssB is highly conserved in Gram-positive bacteria and belongs to the Cluster of Orthologous Groups of protein COG4499 with no known function.

Results

By generating an internal deletion in essB , we demonstrate that EssB is required for secretion of EsxA. We use a polyclonal antibody to identify EssB and show that the protein fractionates with the plasma membrane of S. aureus . Yet, when produced in Escherichia coli, EssB remains mostly soluble and the purified protein assembles into a highly organized oligomer that can be visualized by electron microscopy. Production of truncated EssB variants in wild-type S. aureus confers a dominant negative phenotype on EsxA secretion.

Conclusions

The data presented here support the notion that EssB may oligomerize and interact with other membrane components to form the WXG100-specific translocon in S. aureus .

【 授权许可】

   
2012 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803093037439.pdf 1666KB PDF download
Figure 5 . 43KB Image download
Figure 4 . 59KB Image download
Figure 3 . 40KB Image download
Figure 2 . 70KB Image download
Figure 1 . 60KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

【 参考文献 】
  • [1]Dalbey RE, Wickner W: Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 1985, 260:15925-15931.
  • [2]Emr SD, Hanley-Way S, Silhavy TJ: Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 1981, 23:79-88.
  • [3]Oliver DB, Beckwith J: E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 1981, 25:765-772.
  • [4]Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W: The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 1990, 63:269-279.
  • [5]Gorlich D, Rapoport TA: Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 1993, 75:615-630.
  • [6]Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W: SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 1995, 83:1171-1181.
  • [7]Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T: Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 1998, 17(13):3640-3650.
  • [8]Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ: A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 1998, 93(1):93-101.
  • [9]Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS: C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 2006, 313(5793):1632-1636.
  • [10]Pallen MJ: The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system? Trends Microbiol 2002, 10(5):209-212.
  • [11]Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J, et al.: Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 2005, 24(14):2491-2498.
  • [12]Sundaramoorthy R, Fyfe PK, Hunter WN: Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J Mol Biol 2008, 383(3):603-614.
  • [13]Stanley SA, Raghavan S, Hwang WW, Cox JS: Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 2003, 100:13001-13006.
  • [14]Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, et al.: The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 2003, 100:12420-12425.
  • [15]Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST: Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 2003, 9:533-539.
  • [16]Burts ML, Williams WA, DeBord K, Missiakas DM: EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2005, 102(4):1169-1174.
  • [17]Abdallah AM, van Pittius NC G, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W: Type VII secretion--mycobacteria show the way. Nat Rev Microbiol 2007, 5(11):883-891.
  • [18]Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, et al.: Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 2009, 5(10):e1000507.
  • [19]Burts ML, DeDent AC, Missiakas DM: EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 2008, 69(3):736-746.
  • [20]Anderson M, Chen YH, Butler EK, Missiakas DM: EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol 2011, 193(7):1583-1589.
  • [21]Garufi G, Butler E, Missiakas D: ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 2008, 190(21):7004-7011.
  • [22]Desvaux M, Hebraud M, Talon R, Henderson IR: Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 2009, 17(4):139-145.
  • [23]Dreisbach A, Otto A, Becher D, Hammer E, Teumer A, Gouw JW, Hecker M, Volker U: Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques. Proteomics 2008, 8(10):2062-2076.
  • [24]Driessen AJ, Nouwen N: Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008, 77:643-667.
  • [25]Lee VT, Schneewind O: Protein secretion and the pathogenesis of bacterial infections. Genes Dev 2001, 15(14):1725-1752.
  • [26]Waksman G: Bacterial secretion comes of age. Philos Trans R Soc Lond B Biol Sci 2012, 367(1592):1014-1015.
  • [27]van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M: Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 2005, 71(3):1223-1230.
  • [28]Coros A, Callahan B, Battaglioli E, Derbyshire KM: The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 2008, 69(4):794-808.
  • [29]Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O: Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci U S A 2000, 97(10):5510-5515.
  • [30]Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC: Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A 2008, 105(40):15376-15381.
  • [31]Wang IN, Smith DL, Young R: Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 2000, 54:799-825.
  • [32]Bae T, Schneewind O: Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 2006, 55(1):58-63.
  • [33]Bubeck Wardenburg J, Williams WA, Missiakas D: Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc Natl Acad Sci U S A 2006, 103(37):13831-13836.
  • [34]Kreiswirth BN, Lofdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, Novick RP: The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 1983, 305(5936):709-712.
  • [35]Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, Francois P, Cheung AL: Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 2011, 193(9):2332-2335.
  • [36]Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, et al.: Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 2006, 367(9512):731-739.
  文献评价指标  
  下载次数:53次 浏览次数:10次