期刊论文详细信息
BMC Genomics
L-carnitine and PPARα-agonist fenofibrate are involved in the regulation of Carnitine Acetyltransferase (CrAT) mRNA levels in murine liver cells
Reinhold Hofbauer1  Thomas Georg Völk1  Aniko Ginta Pordes2  Klemens Kienesberger1 
[1] Department of Medical Biochemistry, Division Molecular Genetics, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrg. 9, Vienna Biocenter, A-1030 Vienna, Austria;Current address: Baxter Innovations GmbH, A-Wagramer Str. 17-19, Vienna 1221, Austria
关键词: Fenofibrate;    Carnitine acetyltransferase;    PPARα;    L-carnitine;   
Others  :  857051
DOI  :  10.1186/1471-2164-15-514
 received in 2014-02-06, accepted in 2014-06-19,  发布年份 2014
PDF
【 摘 要 】

Background

The carnitine acetyltransferase (CrAT) is a mitochondrial matrix protein that directly influences intramitochondrial acetyl-CoA pools. Murine CrAT is encoded by a single gene located in the opposite orientation head to head to the PPP2R4 gene, sharing a very condensed bi-directional promoter. Since decreased CrAT expression is correlated with metabolic inflexibility and subsequent pathological consequences, our aim was to reveal and define possible activators of CrAT transcription in the normal embryonic murine liver cell line BNL CL. 2 and via which nuclear factors based on key metabolites mainly regulate hepatic expression of CrAT. Here we describe a functional characterization of the CrAT promoter region under conditions of L-carnitine deficiency and supplementation as well as fenofibrate induction in cell culture cells.

Results

The murine CrAT promoter displays some characteristics of a housekeeping gene: it lacks a TATA-box, is very GC-rich and harbors two Sp1 binding sites. Analysis of the promoter activity of CrAT by luciferase assays uncovered a L-carnitine sensitive region within −342 bp of the transcription start. Electrophoretic mobility shift and supershift assays proved the sequence element (−228/-222) to be an L-carnitine sensitive RXRα binding site, which also showed sensitivity to application of anti-PPARα and anti-PPARbp antibodies. In addition we analysed this specific RXRα/PPARα site by Southwestern Blotting technique and could pin down three protein factors binding to this promoter element. By qPCR we could quantify the nutrigenomic effect of L-carnitine itself and fenofibrate.

Conclusions

Our results indicate a cooperative interplay of L-carnitine and PPARα in transcriptional regulation of murine CrAT, which is of nutrigenomical relevance. We created experimental proof that the muCrAT gene clearly is a PPARα target. Both L-carnitine and fenofibrate are inducers of CrAT transcripts, but the important hyperlipidemic drug fenofibrate being a more potent one, as a consequence of its pharmacological interaction.

【 授权许可】

   
2014 Kienesberger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723063216977.pdf 460KB PDF download
53KB Image download
48KB Image download
53KB Image download
70KB Image download
44KB Image download
44KB Image download
【 图 表 】

【 参考文献 】
  • [1]Vaz FM, Wanders RJA: Carnitine biosynthesis in mammals. Biochem J 2002, 361:417-429.
  • [2]Strijbis K, Vaz F, Distel B: Enzymology of the carnitine biosynthesis pathway. IUBMB Life 2010, 62(5):357-362.
  • [3]Tanphaichitr V, Broquist HP: Role of lysine and N-trimethyllysine in carnitine biosynthesis. J Biol Chem 1973, 248(6):2176-2181.
  • [4]Ramsay RR, Gandour RD, van der Leij FR: Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta Protein Struct Mol Enzymol 2001, 1546(1):21-43.
  • [5]Kerner J, Hoppel C: Fatty acid import into mitochondria. Biochem Biophys Acta Mol Cell Biol Lipids 2000, 1486(1):1-17.
  • [6]Mingrone G: Carnitine in type 2 diabetes. Ann N Y Acad Sci 2004, 1033:99-107.
  • [7]DeFronzo RA: Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999, 131(4):281-303.
  • [8]Wu P, Inskeep K, Bowker-Kinley MM, Popov KM, Harris RA: Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes 1999, 48(8):1593-1599.
  • [9]Brunner S, Kramar K, Denhardt DT, Hofbauer R: Cloning and characterization of murine carnitine acetyltransferase: evidence for a requrement during cell cycle progression. Biochem J 1997, 322:403-410.
  • [10]van der Leij FR, Huijkman NCA, Boomsma C, Kuipers JRG, Bartelds B: Genomics of the human carnitine acyltransferase genes. Mol Genet Metab 2000, 71(1–2):139-153.
  • [11]Zammit VA, Ramsay RR, Bonomini M, Arduini A: Carnitine, mitochondrial function and therapy. Adv Drug Deliv Rev 2009, 61(14):1353-1362.
  • [12]Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM: Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009, 284(34):22840-22852.
  • [13]Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, Muoio DM, Mynatt RL: Carnitine revisited: potential use as adjunctive treatment in diabetes. Diabetologia 2007, 50(4):824-832.
  • [14]Muoio DM, Noland RC, Kovalik J-P, Seiler SE, Davies MN, DeBalsi KL, Ilkayeva OR, Stevens RD, Kheterpal I, Zhang J, Covington JD, Bajpeyi S, Ravussin E, Kraus W, Koves TR, Mynatt RL: Muscle-Specific Deletion of Carnitine Acetyltransferase Compromises Glucose Tolerance and Metabolic Flexibility. Cell Metabolism 2012, 15(5):764-777.
  • [15]Godarova A, Litzlbauer E, Brunner S, Agu A, Lohninger A, Hofbauer R: L-Carnitine regulates mRNA expression levels of the carnitine acyltransferases - CPT1A, CPT2 and CRAT. Chem Mon 2005, 136:1349-1363.
  • [16]Rakhshandehroo M, Sanderson LM, Matilainen M, Stienstra R, Carlberg C, de Groot PJ, Müller M, Kersten S: Comprehensive Analysis of PPARalpha-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling. PPAR Research 2007, 2007(26839):1-13.
  • [17]Tachibana K, Kobayashi Y, Tanaka T, Tagami M, Sugiyama A, Katayama T, Ueda C, Yamasaki D, Ishimoto K, Sumitomo M, Uchiyama Y, Kohro T, Sakai J, Hamakubo T, Kodama T, Doi T: Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nuclear Receptor 2005, 3(1):1-17.
  • [18]Janssens V, Van Hoof C, De Baere I, Merlevede W, Goris J: Functional analysis of the promoter region of the human phosphotyrosine phosphatase activator gene: Yin Yang 1 is essential for core promoter activity. Biochem J 1999, 344(Pt 3):755-763.
  • [19]Janssens V, Van Hoof C, De Baere I, Merlevede W, Goris J: The phosphotyrosyl phosphatase activator gene is a novel p53 target gene. J Biol Chem 2000, 275(27):20488-20495.
  • [20]Hofer-Litzlbauer E: Biochemical and genetical consequences of carnitine deficiency caused by downregulation of the carnitine acyltransferase genes. Vienna: Medical University of Vienna; 2005. [Doctoral Thesis]
  • [21]Cook GA, Edwards TL, Jansen MS, Bahouth SW, Wilcox HG, Park EA: Differential Regulation of Carnitine Palmitoyltransferase-I Gene Isoforms (CPT-I alpha and CPT-Ibeta) in the Rat Heart. J Mol Cell Cardiol 2001, 33(2):317-329.
  • [22]Barrero MJ, Camarero N, Marrero PF, Haro D: Control of human carnitine palmitoyltransferase II gene transcription by peroxisome proliferator-activated receptor through a partially conserved peroxisome proliferator-responsive element. Biochem J 2003, 369(3):721-729.
  • [23]Dayoub R, Groitl P, Dobner T, Bosserhoff AK, Schlitt H-J, Weiss TS: Foxa2 (HNF-3[beta]) regulates expression of hepatotrophic factor ALR in liver cells. Biochem Biophys Res Commun 2010, 395(4):465-470.
  • [24]Li JL, Wang QY, Luan HY, Kang ZC, Wang CB: Effects of L-carnitine against oxidative stress in human hepatocytes: involvement of peroxisome proliferator-activated receptor alpha. J Biomed Sci 2012, 19:32.
  • [25]Gerondaes P, Alberti GMM, Loranne A: Fatty acid metabolism in hepatocytes cultured with hypolipidaemic drugs. Biochem J 1988, 253:161-167.
  • [26]Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga J, Ishibashi S, Yamada N: Cross-Talk between Peroxisome Proliferator-Activated Receptor (PPAR) alpha and Liver X Receptor (LXR) in Nutritional Regulation of Fatty Acid Metabolism. II. LXRs Suppress Lipid Degradation Gene Promoters through Inhibition of PPAR Signaling. Mol Endocrinol 2003, 17(7):1255-1267.
  • [27]Roche T, Hiromasa Y: Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 2007, 64(7):830-849.
  • [28]Consoli A: Role of liver in pathophysiology of NIDDM. Diabetes Care 1992, 15(3):430-441.
  • [29]Alesci S, De Martino MU, Mirani M, Benvenga S, Trimachi F, Kino T, Chrousos GP: L-Carnitine: a nutritional modulator of glucocorticoid receptor functions. FASEB J 2003, 17(11):1553-1555.
  • [30]Siu FKY, Lee LTO, Chow BKC: Southwestern blotting in investigating transcriptional regulation. Nat Protoc 2008, 3(1):51-58.
  文献评价指标  
  下载次数:42次 浏览次数:20次