期刊论文详细信息
BMC Medical Imaging
Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging
Vince Calhoun2  Zikuan Chen1 
[1] The Mind Research Network and LBERI, Albuquerque 87106, NM, USA;Department of Electrical and Computer Engineering, Albuquerque 87131, NM, USA
关键词: Spatial correlation;    Magnetic fieldmap;    Voxelization;    Intravoxel dephasing;    Blood magnetism;    Neuroactive blob (NAB);    Neurovascular coupling;    Bold fMRI;   
Others  :  1092361
DOI  :  10.1186/1471-2342-12-8
 received in 2011-12-28, accepted in 2012-04-23,  发布年份 2012
PDF
【 摘 要 】

Background

The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation.

Methods

Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation.

Results

The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of TE = 30 ms, B0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00.

Conclusion

Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility source (spatial correlation ≈ 0.90), and that the MR phase image conforms closely with the susceptibility-induced fieldmap (spatial correlation ≈ 1.00).

【 授权许可】

   
2012 Chen and Calhoun; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128183034810.pdf 2838KB PDF download
Figure 9. 60KB Image download
Figure 8. 28KB Image download
Figure 7. 30KB Image download
Figure 6. 23KB Image download
Figure 5. 75KB Image download
Figure 4. 27KB Image download
Figure 3. 143KB Image download
Figure 2. 87KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM: The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 1995, 34(1):4-10.
  • [2]Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM: MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995, 34(4):555-566.
  • [3]Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K: Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993, 64(3):803-812.
  • [4]Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR: Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 1994, 31(6):601-610.
  • [5]Yablonskiy DA, Haacke EM: Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994, 32(6):749-763.
  • [6]Pathak AP, Ward BD, Schmainda KM: A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method. Neuroimage 2008, 40(3):1130-1143.
  • [7]Arthurs OJ, Boniface S: How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci 2002, 25(1):27-31.
  • [8]Attwell D, Iadecola C: The neural basis of functional brain imaging signals. Trends Neurosci 2002, 25(12):621-625.
  • [9]Buxton RB: Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenergetics 2010, 2:8.
  • [10]Buxton RB, Frank LR: A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997, 17(1):64-72.
  • [11]Zhang N, Liu Z, He B, Chen W: Noninvasive study of neurovascular coupling during graded neuronal suppression. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2008, 28(2):280-290.
  • [12]Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM: Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics: a review publication of the Radiological Society of North America, Inc 2009, 29(5):1433-1449.
  • [13]Chen Z, Calhoun VD: Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 2011, 199(2):363-369.
  • [14]Howseman AM, Bowtell RW: Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos Trans R Soc Lond B Biol Sci 1999, 354(1387):1179-1194.
  • [15]Moon CH, Fukuda M, Park SH, Kim SG: Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 2007, 27(26):6892-6902.
  • [16]Marques JP, Bowtell RW: Using forward calculations of the magnetic field perturbation due to a realistic vascular model to explore the BOLD effect. NMR Biomed 2008, 21(6):553-565.
  • [17]Martindale J, Kennerley AJ, Johnston D, Zheng Y, Mayhew JE: Theory and generalization of Monte Carlo models of the BOLD signal source. Magn Reson Med 2008, 59(3):607-618.
  • [18]Menon RS: Simulation of BOLD phase and magnitude changes in a voxel. Proc Intl Soc Mag Reson Med 2003, 11:1719.
  • [19]Chen Z, Calhoun V: A computational multiresolution BOLD fMRI model. IEEE Trans BioMed Eng 2011, 58(10):2995-2999.
  • [20]Chen Z, Calhoun VD: Magnitude and Phase Behavior of Multiresolution BOLD signal. Concepts Magn Reson 2010, 37B(3):129-135.
  • [21]Chen Z, Chen Z, Calhoun VD: Multiresolution voxel decomposition of complex-valued BOLD signals reveals phasor turbulence. Orlando: In: SPIE Medical Imaging;:1-11. 16 March 79613y; Orlando, FL: SPIE; 79613y;
  • [22]Chen Z, Chen Z, Calhoun VD: Voxel magnetic field disturbance from remote vasculature in BOLD. fMRI.In:. Orlando: SPIE Medical Imaging; 1-12. 16 March 79613x; Orlando, FL: SPIE; 79613x;
  • [23]Chen Z, Caprihan A, Calhoun VD: Effect of surrounding vasculature on intravoxel BOLD signal. Med Phys 2010, 37(4):1778-1787.
  • [24]Koch KM, Papademetris X, Rothman DL, de Graaf RA: Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance. Phys Med Biol 2006, 51(24):6381-6402.
  • [25]Salomir R, de Senneville BD, Moonen CTW: A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn Reson 2003, B19:26-34.
  • [26]Chen Z, Calhoun V: Computed inverse MRI for magnetic susceptibility map reconstruction. J Comp Assit Tomography 2012, 36(2):265-274. March/April 2012
  • [27]Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ: Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 2000, 101(4):803-806.
  • [28]Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 1999, 96(16):9403-9408.
  • [29]Logothetis NK: The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 2002, 357(1424):1003-1037.
  • [30]Ugurbil K, Toth L, Kim DS: How accurate is magnetic resonance imaging of brain function? Trends Neurosci 2003, 26(2):108-114.
  • [31]Zhang N, Yacoub E, Zhu XH, Ugurbil K, Chen W: Linearity of blood-oxygenation-level dependent signal at microvasculature. Neuroimage 2009, 48(2):313-318.
  • [32]Norris DG: Principles of magnetic resonance assessment of brain function. Journal of magnetic resonance imaging: JMRI 2006, 23(6):794-807.
  • [33]Uludag K, Muller-Bierl B, Ugurbil K: An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 2009, 48(1):150-165.
  • [34]Marques JP, Bowtell R: Application of a fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson 2005, (B25:):65-78.
  • [35]Zhang N, Zhu XH, Chen W: Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli. Neuroimage 2008, 43(2):204-212.
  • [36]Chen Z, Ning R: Breast volume denoising and noise characterization by 3D wavelet transform. Comput Med Imaging Graph 2004, 28(5):235-246.
  文献评价指标  
  下载次数:91次 浏览次数:4次