期刊论文详细信息
BMC Evolutionary Biology
A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes
John J Wiens1  Frank T Burbrink2  R Alexander Pyron3 
[1] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA;Department of Biology, The College of Staten Island, The City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA;Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA
关键词: Systematics;    Supermatrices;    Reptilia;    Phylogenetics;    Squamata;    Serpentes;    Missing data;    Likelihood support measures;    Lacertilia;    Amphisbaenia;   
Others  :  1087468
DOI  :  10.1186/1471-2148-13-93
 received in 2013-01-30, accepted in 2013-03-19,  发布年份 2013
PDF
【 摘 要 】

Background

The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata.

Results

The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy.

Conclusions

We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes.

【 授权许可】

   
2013 Pyron et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116030533281.pdf 4160KB PDF download
Figure 28. 162KB Image download
20151016020739323.pdf 1313KB PDF download
Figure 26. 148KB Image download
Figure 25. 160KB Image download
Figure 24. 141KB Image download
Figure 23. 134KB Image download
Figure 22. 167KB Image download
Figure 21. 137KB Image download
Figure 20. 116KB Image download
Figure 19. 145KB Image download
Figure 18. 179KB Image download
Figure 17. 137KB Image download
Figure 16. 150KB Image download
Figure 15. 126KB Image download
Figure 14. 111KB Image download
Figure 13. 120KB Image download
Figure 12. 122KB Image download
Figure 11. 128KB Image download
Figure 10. 135KB Image download
Figure 9. 139KB Image download
Figure 8. 80KB Image download
Figure 7. 143KB Image download
Figure 6. 135KB Image download
Figure 5. 146KB Image download
Figure 4. 177KB Image download
Figure 3. 153KB Image download
Figure 2. 117KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 28.

【 参考文献 】
  • [1]Uetz P: The Reptile Database. http://www.reptile-database.org/ webcite Accessed December, 2012
  • [2]Greene HW: Snakes: the Evolution of Mystery in Nature. Berkeley: University of California Press; 1997.
  • [3]Vitt LJ, Caldwell JP: Herpetology. 4th edition. Burlington: Elsevier; 2009.
  • [4]Pianka ER, Vitt LJ: Lizards: Windows to the Evolution of Diversity. Berkeley: University of California Press; 2003.
  • [5]Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ: The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008, 5:1591-1604.
  • [6]Mahdavi A, Ferreira L, Sundback C, Nichol JW, Chan EP, Carter DJD, Bettinger CJ, Patanavanich S, Chignozha L, Ben-Joseph E, et al.: A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci USA 2008, 105:2307-2312.
  • [7]Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY: Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2003, 2:461-463.
  • [8]Huey RB, Bennett AF: Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 1987, 41:1098-1115.
  • [9]Losos JB: The evolution of form and function: morphology and locomotor performance in West-Indian Anolis lizards. Evolution 1990, 44:1189-1203.
  • [10]Wiens JJ, Brandley MC, Reeder TW: Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 2006, 60:123-141.
  • [11]Bergmann PJ, Irschick DJ: Vertebral evolution and the diversification of squamate reptiles. Evolution 2012, 66:1044-1058.
  • [12]Losos JB, Hillis DM, Greene HW: Who speaks with a forked tongue? Science 2012, 338:1428-1429.
  • [13]Estes R, de Queiroz K, Gauthier J: Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Families. Edited by Estes R, Pregill G. Stanford: Stanford University Press; 1988:119-281.
  • [14]Gauthier JA, Kearney M, Maisano JA, Rieppel O, Behike ADB: Assembling the Squamate Tree of Life: perspectives from the phenotype and the fossil record. Bull Peabody Mus Nat Hist 2012, 53:3-308.
  • [15]Conrad JL: Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull Am Mus Nat Hist 2008, 310:1-182.
  • [16]Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW Jr, Wiens JJ: Estimating divergence times and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol Phylogenet Evol 2012, 65:974-991.
  • [17]Townsend TM, Larson A, Louis E, Macey JR: Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol 2004, 53:735-757.
  • [18]Vidal N, Hedges SB: The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol 2005, 328:1000-1008.
  • [19]Wiens JJ, Kuczynski CA, Townsend T, Reeder TW, Mulcahy DG, Sites JW: Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst Biol 2010, 59:674-688.
  • [20]Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM, Sites JW, Reeder TW: Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 2012, 8:1043-1046.
  • [21]Camp CL: Classification of the lizards. Bull Am Mus Nat Hist 1923, 48:289-480.
  • [22]Lee MSY: Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol J Linn Soc 1998, 65:369-453.
  • [23]Vidal N, Hedges SB: Molecular evidence for a terrestrial origin of snakes. Proc R Soc B 2004, 271:S226-S229.
  • [24]Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SFR, Kuruppu S, Fung K, Hedges SB, Richardson MK, et al.: Early evolution of the venom system in lizards and snakes. Nature 2006, 439:584-588.
  • [25]Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 2002, 51:588-598.
  • [26]Poe S: Evaluation of the strategy of long-branch subdivision to improve the accuracy of phylogenetic methods. Syst Biol 2003, 52:423-428.
  • [27]Heath TA, Zwickl DJ, Kim J, Hillis DM: Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst Biol 2008, 57:160-166.
  • [28]Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 1998, 47:9-17.
  • [29]Blankers T, Townsend TM, Pepe K, Reeder TW, Wiens JJ: Contrasting global-scale evolutionary radiations: phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol J Linn Soc 2013, 108:127-143.
  • [30]Schulte JA, Moreno-Roark F: Live birth among iguanian lizards predates Pliocene-Pleistocene glaciations. Biol Lett 2010, 6:216-218.
  • [31]Frost DR, Etheridge RE, Janies D, Titus TA: Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). Am Mus Novit 2001, 3343:38.
  • [32]Macey JR, Schulte JA, Larson A, Ananjeva NB, Wang YZ, Pethiyagoda R, Rastegar-Pouyani N, Papenfuss TJ: Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Syst Biol 2000, 49:233-256.
  • [33]Schulte JA, Valladares JP, Larson A: Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica 2003, 59:399-419.
  • [34]Townsend TM, Mulcahy DG, Noonan BP, Sites JW, Kuczynski CA, Wiens JJ, Reeder TW: Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol 2011, 61:363-380.
  • [35]Slowinski JB, Lawson R: Snake phylogeny: evidence from nuclear and mitochondrial genes. Mol Phylogenet Evol 2002, 24:194-202.
  • [36]Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Reeder TW: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Syst Biol 2008, 57:420-431.
  • [37]Lawson R, Slowinski JB, Burbrink FT: A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia. J Zool 2004, 263:285-294.
  • [38]Vidal N, Marin J, Morini M, Donnellan S, Branch WR, Thomas R, Vences M, Wynn A, Cruaud C, Hedges SB: Blindsnake evolutionary tree reveals long history on Gondwana. Biol Lett 2010, 6:558-561.
  • [39]Adalsteinsson SA, Branch WR, Trape S, Vitt LJ, Hedges SB: Molecular phylogeny, classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata). Zootaxa 2009, 2244:1-50.
  • [40]Kelly CMR, Barker NP, Villet MH, Broadley DG: Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene. Cladistics 2009, 25:38-63.
  • [41]Pyron RA, Burbrink FT, Colli GR, de Oca ANM, Vitt LJ, Kuczynski CA, Wiens JJ: The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol 2011, 58:329-342.
  • [42]Zaher H, Grazziotin FG, Cadle JE, Murphy RW, de Moura JC, Bonatto SL: Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Pap Av Zool 2009, 49:115-153.
  • [43]Grazziotin FG, Zaher H, Murphy RW, Scrocchi G, Benavides MA, Zhang Y-P, Bonatto SL: Molecular phylogeny of the New World Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics 2012, 28:437-459.
  • [44]Pyron RA, Kandambi HKDK, Hendry CR, Pushpamal V, Burbrink FT, Somaweera R: Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Mol Phylogenet Evol 2013, 66:969-978.
  • [45]Vidal N, Delmas AS, David P, Cruaud C, Coujoux A, Hedges SB: The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. CR Biol 2007, 330:182-187.
  • [46]Sanders KL, Lee MSY, Bertozzi T, Rasmussen AR: Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Mol Phylogenet Evol 2012, 66:575-591.
  • [47]Noonan BP, Chippindale PT: Dispersal and vicariance: the complex evolutionary history of boid snakes. Mol Phylogenet Evol 2006, 40:347-358.
  • [48]Lynch VJ, Wagner GP: Did egg-laying boas break Dollo's law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae). Evolution 2010, 64:207-216.
  • [49]Schmitz A, Brandley MC, Mausfeld P, Vences M, Glaw F, Nussbaum RA, Reeder TW: Opening the black box: phylogenetics and morphological evolution of the Malagasy fossorial lizards of the subfamily "Scincinae". Mol Phylogenet Evol 2005, 34:118-133.
  • [50]Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 2005, 54:373-390.
  • [51]Whiting AS, Bauer AM, Sites JW: Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Mol Phylogenet Evol 2003, 29:582-598.
  • [52]Skinner A, Lee MSY, Hutchinson MN: Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol Biol 2008, 8:310. BioMed Central Full Text
  • [53]Gamble T, Colli GR, Rodrigues MT, Werneck FP, Simons AM: Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America's open biomes. Mol Phylogenet Evol 2012, 62:943-953.
  • [54]Gamble T, Daza JD, Colli GR, Vitt LJ, Bauer AM: A new genus of miniaturized and pug-nosed gecko from South America (Sphaerodactylidae: Gekkota). Zool J Linn Soc 2011, 163:1244-1266.
  • [55]Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM: Coming to America: multiple origins of New World geckos. J Evol Biol 2011, 24:231-244.
  • [56]Gamble T, Bauer AM, Greenbaum W, Jackman TR: Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zool Scripta 2008, 37:355-366.
  • [57]Oliver PM, Bauer AM, Greenbaum E, Jackman T, Hobbie T: Molecular phylogenetics of the arboreal Australian gecko genus Oedura Gray 1842 (Gekkota: Diplodactylidae): another plesiomorphic grade? Mol Phylogenet Evol 2012, 63:255-264.
  • [58]Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH: New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Mol Phylogenet Evol 2011, 59:1-22.
  • [59]Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM: Repeated origin and loss of adhesive toepads in geckos. PLoS One 2012, 7:e39429.
  • [60]Wood PL Jr, Heinicke MP, Jackman TR, Bauer AM: Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Mol Phylogenet Evol 2012, 65:992-1003.
  • [61]Giugliano LG, Collevatti RG, Colli GR: Molecular dating and phylogenetic relationships among Teiidae (Squamata) inferred by molecular and morphological data. Mol Phylogenet Evol 2007, 45:168-179.
  • [62]Reeder TW, Cole CJ, Dessauer HC: Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevalution of karyotypic evolution, and review of hybrid origins. Am Mus Novit 2002, 3365:1-61.
  • [63]Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y, Sites JW: A molecular perspective on the evolution of microteiid lizards (Squamata, Gymnophthalmidae), and a new classification for the family. Biol J Linn Soc 2001, 74:315-338.
  • [64]Castoe TA, Doan TM, Parkinson CL: Data partitions and complex models in Bayesian analysis: the phylogeny of gymnophthalmid lizards. Syst Biol 2004, 53:448-469.
  • [65]Pavlicev M, Mayer W: Fast radiation of the subfamily Lacertinae (Reptilia: Lacertidae): history or methodical artefact? Mol Phylogenet Evol 2009, 52:727-734.
  • [66]Mayer W, Pavilcev M: The phylogeny of the family Lacertidae (Reptilia) based on nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily Eremiainae. Mol Phylogenet Evol 2007, 44:1155-1163.
  • [67]Fu JZ: Toward the phylogeny of the family Lacertidae: why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol J Linn Soc 2000, 71:203-217.
  • [68]Arnold EN, Arribas O, Carranza S: Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 2007, 1430:1-86.
  • [69]Greenbaum E, Villanueva CO, Kusamba C, Aristote MM, Branch WR: A molecular phylogeny of equatorial African Lacertidae, with the description of a new genus and species from eastern Democratic Republic of the Congo. Zool J Linn Soc 2011, 163:913-942.
  • [70]Mott T, Vieites DR: Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Mol Phylogenet Evol 2009, 51:190-200.
  • [71]Kearney M, Stuart BL: Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc R Soc B 2004, 271:1677-1683.
  • [72]Driskell AC, Ane C, Burleigh JG, McMahon MM, O'Meara BC, Sanderson MJ: Prospects for building the tree of life from large sequence databases. Science 2004, 306:1172-1174.
  • [73]Wiens JJ, Fetzner JW, Parkinson CL, Reeder TW: Hylid frog phylogeny and sampling strategies for speciose clades. Syst Biol 2005, 54:719-748.
  • [74]de Queiroz A, Gatesy J: The supermatrix approach to systematics. Trends Ecol Evol 2007, 22:34-41.
  • [75]Thomson RC, Shaffer HB: Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol 2010, 59:42-58.
  • [76]Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 2011, 61:543-583.
  • [77]Hinchcliff CE, Roalson EH: Using supermatrices for phylogenetic inquiry: an example using the sedges. Syst Biol 2013, 62:205-219.
  • [78]Guo P, Liu Q, Xu Y, Jiang K, Hou M, Ding L, Pyron RA, Burbrink FT: Out of Asia: natricine snakes support the Cenozoic Beringian Dispersal Hypothesis. Mol Phylogenet Evol 2012, 63:825-833.
  • [79]Pyron RA, Burbrink FT: Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes: Colubridae). Mol Phylogenet Evol 2009, 52:524-529.
  • [80]Burbrink FT, Lawson R: How and when did Old World ratsnakes disperse into the New World? Mol Phylogenet Evol 2007, 43:173-189.
  • [81]Lawson R, Slowinski JB, Crother BI, Burbrink FT: Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol 2005, 37:581-601.
  • [82]Wiens JJ, Kuczynski CA, Arif S, Reeder TW: Phylogenetic relationships of phrynosomatid lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus. Mol Phylogenet Evol 2010, 54:150-161.
  • [83]Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM: The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst Biol 2009, 58:130-145.
  • [84]Roure B, Baurain D, Philippe H: Impact of missing data on phylogenies inferred from empirical phylogenomic datasets. Mol Biol Evol 2013, 30:197-214.
  • [85]Wiens JJ, Morrill MC: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 2011, 60:719-731.
  • [86]Pyron RA: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst Biol 2011, 60:466-481.
  • [87]Wiens JJ, Tiu J: Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS One 2012, 7:e42925.
  • [88]Scanlon JD, Lee MSY: The Pleistocene serpent Wonambi and the early evolution of snakes. Nature 2000, 403:416-420.
  • [89]Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL: A fossil snake with limbs. Science 2000, 287:2010-2012.
  • [90]Rage J-C: Serpentes. Stuttgart: Gustav Fischer Verlag; 1984.
  • [91]Estes R: Sauria terrestria, Amphisbaenia. Stuttgart: Gustav Fischer Verlag; 1983.
  • [92]Holman JA: Fossil Snakes of North America: Origin, Evolution, Distribution, Paleoecology. Bloomington: Indiana University Press; 2000.
  • [93]Rage J-C: Fossil history. In Snakes: Ecology and Evolutionary Biology. Edited by Seigel RA, Collins JT, Novak SS. New York: McMillan; 1987:51-76.
  • [94]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006, 55:539-552.
  • [95]Lee MSY: Squamate phylogeny, taxon sampling, and data congruence. Org Div Evol 2005, 5:25-45.
  • [96]Townsend TM, Leavitt DH, Reeder TW: Intercontinental dispersal by a microendemic burrowing reptile (Dibamidae). Proc R Soc B 2011, 278:2568-2574.
  • [97]Kluge AG: Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc Pub Mus Zool Univ Mich 1987, 173:1-54.
  • [98]Gamble T, Bauer AM, Greenbaum E, Jackman TR: Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. J Biogeogr 2008, 35:88-104.
  • [99]Melville J, Schulte JA, Larson A: A molecular study of phylogenetic relationships and evolution of antipredator strategies in Australian Diplodactylus geckos, subgenus Strophurus. Biol J Linn Soc 2004, 82:123-138.
  • [100]Jennings WB, Pianka ER, Donnellan S: Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biotas. Syst Biol 2003, 52:757-780.
  • [101]Bauer AM, Jackman TR, Sadlier RA, Whitaker AH: Revision of the giant geckos of New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus). Zootaxa 2012, 3404:1-52.
  • [102]Brown RM, Siler CD, Das I, Min Y: Testing the phylogenetic affinities of Southeast Asia's rarest geckos: flap-legged geckos (Luperosaurus), flying geckos (Ptychozoon) and their relationship to the pan-Asian genus Gekko. Mol Phylogenet Evol 2012, 63:915-921.
  • [103]Vicario S, Caccone A, Gauthier J: Xantusiid "night" lizards: a puzzling phylogenetic problem revisited using likelihood-based Bayesian methods on mtDNA sequences. Mol Phylogenet Evol 2003, 26:243-261.
  • [104]Hedges SB, Bezy RL, Maxson LR: Phylogenetic relationships and biogeography of xantusiid lizards, inferred from mitochondrial DNA sequences. Mol Biol Evol 1991, 8:767-780.
  • [105]Smith HM: The name of the non-nominotypical subfamily of the lizard family Xantusiidae. Syst Zool 1987, 36:326-328.
  • [106]Savage JM: The Amphibians and Reptiles of Costa Rica: a Herpetofauna between Two Continents, between Two Seas. Chicago: University of Chicago Press; 2002.
  • [107]Crother BI, Miyamoto MM, Presch WF: Phylogeny and biogeography of the lizard family Xantusiidae. Syst Zool 1986, 35:37-45.
  • [108]Stanley EL, Bauer AM, Jackman TR, Branch WR, Mouton PLFN: Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae). Mol Phylogenet Evol 2011, 58:53-70.
  • [109]Frost DR, Janies D, Mouton PIN, Titus TA: A molecular perspective on the phylogeny of the girdled lizards (Cordylidae, Squamata). Am Mus Novit 2001, 3310:1-10.
  • [110]Greer AE: A subfamilial classification of scincid lizards. Bull Mus Comp Zool 1970, 139:151-183.
  • [111]Smith SA, Sadlier RA, Bauer AM, Austin CC, Jackman T: Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis. Mol Phylogenet Evol 2007, 43:1151-1166.
  • [112]Hedges SB, Conn CE: A new skink fauna from Caribbean islands (Squamata, Mabuyidae, Mabuyinae). Zootaxa 2012, 3288:1-244.
  • [113]Vences M, Guayasamin JM, Miralles A, de La Riva I: To name or not to name: criteria to promote economy of change in supraspecific Linnaean classification schemes. Zootaxa 2013, 3636:201-244.
  • [114]Bauer AM: On the identity of Lacerta punctata Linnaeus, 1758, the type species of the genus Euprepis Wagler, 1830, and the generic assignment of Afro-Malagasy skinks. Afr J Herpetol 2003, 52:1-7.
  • [115]Austin JJ, Arnold EN: Using ancient and recent DNA to explore relationships of extinct and endangered Leiolopisma skinks (Reptilia: Scincidae) in the Mascarene islands. Mol Phylogenet Evol 2006, 39:503-511.
  • [116]Skinner A: Phylogenetic relationships and rate of early diversification of Australian Sphenomorphus group scincids (Scincoidea, Squamata). Biol J Linn Soc 2007, 92:347-366.
  • [117]Linkem CW, Diesmos AC, Brown RM: Molecular systematics of the Philippine forest skinks (Squamata: Scincidae: Sphenomorphus): testing morphological hypotheses of interspecific relationships. Zool J Linn Soc 2011, 163:1217-1243.
  • [118]Siler CD, Diesmos AC, Alcala AC, Brown RM: Phylogeny of Philippine slender skinks (Scincidae: Brachymeles) reveals underestimated species diversity, complex biogeographical relationships, and cryptic patterns of lineage diversification. Mol Phylogenet Evol 2011, 59:53-65.
  • [119]Brandley MC, Ota H, Hikida T, de Oca ANM, Feria-Ortiz M, Guo XG, Wang YZ: The phylogenetic systematics of blue-tailed skinks (Plestiodon) and the family Scincidae. Zool J Linn Soc 2012, 165:163-189.
  • [120]Crottini A, Dordel J, Kohler J, Glaw F, Schmitz A, Vences M: A multilocus phylogeny of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo and Cryptoscincus. Mol Phylogenet Evol 2009, 53:345-350.
  • [121]Sindaco R, Metallinou M, Pupin F, Fasola M, Carranza S: Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago. Zool Scripta 2012, 41:346-362.
  • [122]Miralles A, Fuenmayor GR, Bonillo C, Schargel WE, Barros T, Garcia-Perez JE, Barrio-Amoros CL: Molecular systematics of Caribbean skinks of the genus Mabuya (Reptilia, Scincidae), with descriptions of two new species from Venezuela. Zool J Linn Soc 2009, 156:598-616.
  • [123]Harvey MB, Ugueto GN, Gutberlet RL: Review of teiid morphology with a revised taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa 2012, 3459:1-156.
  • [124]Doan TM, Castoe TA: Phylogenetic taxonomy of the Cercosaurini (Squamata: Gymnophthalmidae), with new genera for species of Neusticurus and Proctoporus. Zool J Linn Soc 2005, 143:405-416.
  • [125]Vidal N, Azvolinsky A, Cruaud C, Hedges SB: Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 2008, 4:115-118.
  • [126]Vidal N, Hedges SB: The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biol 2009, 332:129-139.
  • [127]Lee MSY: Hidden support from unpromising data sets strongly unites snakes with anguimorph 'lizards'. J Evol Biol 2009, 22:1308-1316.
  • [128]Hugall AF, Foster R, Lee MSY: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 2007, 56:543-563.
  • [129]Macey JR, Schulte JA, Larson A, Tuniyev BS, Orlov N, Papenfuss TJ: Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol Phylogenet Evol 1999, 12:250-272.
  • [130]Conrad JL, Ast JC, Montanari S, Norell MA: A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics 2011, 27:230-277.
  • [131]Collar DC, Schulte JA, Losos JB: Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 2011, 65:2664-2680.
  • [132]Chippindale PT, Ammerman LK, Campbell JA: Molecular approaches to phylogeny of Abronia (Anguidae: Gerrhonotinae), with emphasis on relationships in subgenus Auriculabronia. Copeia 1998, 4:883-892.
  • [133]Conroy CJ, Bryson RW, Lazcano D, Knight A: Phylogenetic placement of the pygmy alligator lizard based on mitochondrial DNA. J Herp 2005, 39:142-147.
  • [134]Okajima Y, Kumazawa Y: Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 2010, 10:141. BioMed Central Full Text
  • [135]Castoe TA, de Koning APJ, Kim HM, Gu WJ, Noonan BP, Naylor G, Jiang ZJ, Parkinson CL, Pollock DD: Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 2009, 106:8986-8991.
  • [136]Raxworthy CJ, Forstner MRJ, Nussbaum RA: Chameleon radiation by oceanic dispersal. Nature 2002, 415:784-787.
  • [137]Townsend TM, Vieites DR, Glaw F, Vences M: Testing species-level diversification hypotheses in Madagascar: the case of microendemic Brookesia leaf chameleons. Syst Biol 2009, 58:641-656.
  • [138]Townsend TM, Tolley KA, Glaw F, Bohme W, Vences M: Eastward from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands. Biol Lett 2011, 7:225-228.
  • [139]Tolley KA, Townsend TM, Vences M: Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proc R Soc B 2013, 280:20130184.
  • [140]Honda M, Ota H, Kobayashi M, Nabhitabhata J, Yong H-S, Sengoku S, Hikida T: Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from mitochondrial DNA sequences. Zool Sci 2000, 17:527-537.
  • [141]Hugall AF, Foster R, Hutchinson M, Lee MSY: Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biol J Linn Soc 2008, 93:343-358.
  • [142]Honda M, Ota H, Sengoku S, Yong HS, Hikida T: Molecular evaluation of phylogenetic significances in the highly divergent karyotypes of the genus Gonocephalus (Reptilia: Agamidae) from tropical Asia. Zool Sci 2002, 19:129-133.
  • [143]Baig KJ, Wagner P, Ananjeva NB, Bohme W: A morphology-based taxonomic revision of Laudakia Gray, 1845 (Squamata: Agamidae). Vertebr Zool 2012, 62:213-260.
  • [144]Wilms TM, Bohme W, Wagner P, Lutzmann N, Schmitz A: On the phylogeny and taxonomy of the genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae): resurrection of the genus Saara Gray, 1845. Bonner zoologische Beiträge 2009, 56:55-99.
  • [145]Wagner P, Melville J, Wilms TM, Schmitz A: Opening a box of cryptic taxa: the first review of the North African desert lizards in the Trapelus mutabilis Merrem, 1820 complex (Squamata: Agamidae) with descriptions of new taxa. Zool J Linn Soc 2011, 163:884-912.
  • [146]Etheridge R, de Queiroz K: A phylogeny of Iguanidae. In Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L Camp. Edited by Estes RD, Pregill GK. Stanford: Stanford University Press; 1988:283-367.
  • [147]Frost DR, Etheridge R: A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata). Misc Publ Univ Kansas 1989, 81:1-65.
  • [148]Macey JR, Larson A, Ananjeva NB, Papenfuss TJ: Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. J Mol Evol 1997, 44:660-674.
  • [149]Noonan BP, Chippindale PT: Vicariant origin of Malagasy reptiles supports late Cretaceous antarctic land bridge. Am Nat 2006, 168:730-741.
  • [150]Noonan BP, Sites JW: Tracing the origins of iguanid lizards and boine snakes of the Pacific. Am Nat 2010, 175:61-72.
  • [151]Schulte JA, Cartwright EM: Phylogenetic relationships among iguanian lizards using alternative partitioning methods and TSHZ1: a new phylogenetic marker for reptiles. Mol Phylogenet Evol 2009, 50:391-396.
  • [152]Nicholson KE, Crother BI, Guyer C, Savage JM: It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 2012, 3477:1-108.
  • [153]Poe S: Phylogeny of anoles. Herp Monogr 2004, 18:37-89.
  • [154]Guyer C, Savage JM: Cladistic relationships among anoles (Sauria, Iguanidae). Syst Zool 1986, 35:509-531.
  • [155]Losos JB: Lizards in an Evolutionary Tree: the Ecology of Adaptive Radiation in Anoles. Berkeley: University of California Press; 2009.
  • [156]Cannatella DC, de Queiroz K: Phylogenetic systematics of the anoles: is a new taxonomy warranted? Syst Zool 1989, 38:57-69.
  • [157]Poe S: 1986 redux: new genera of anoles (Squamata: Dactyloidae) are unwarranted. Zootaxa 2013, 3626:295-299.
  • [158]Heise PJ, Maxson LR, Dowling HG, Hedges SB: Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol Biol Evol 1995, 12:259-265.
  • [159]Burbrink FT, Pyron RA: The taming of the skew: estimating proper confidence intervals for divergence dates. Syst Biol 2008, 57:317-328.
  • [160]Pyron RA, Burbrink FT: Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 2012, 66:163-178.
  • [161]Gower DJ, Vidal N, Spinks JN, McCarthy CJ: The phylogenetic position of Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences. J Zool Syst Evol Res 2005, 43:315-320.
  • [162]Cadle JE, Dessauer HC, Gans C, Gartside DF: Phylogenetic relationships and molecular evolution in uropeltid snakes (Serpentes, Uropeltidae): allozymes and albumin immunology. Biol J Linn Soc 1990, 40:293-320.
  • [163]Wallach V, Wuster W, Broadley DG: In praise of subgenera: taxonomic status of cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zootaxa 2009, 2236:26-36.
  • [164]Williams D, Wuster W, Fry BG: The good, the bad and the ugly: Australian snake taxonomists and a history of the taxonomy of Australia's venomous snakes. Toxicon 2006, 48:919-930.
  • [165]Rawlings LH, Rabosky DL, Donnellan SC, Hutchinson MN: Python phylogenetics: inference from morphology and mitochondrial DNA. Biol J Linn Soc 2008, 93:603-619.
  • [166]Burbrink FT: Inferring the phylogenetic position of Boa constrictor among the Boinae. Mol Phylogenet Evol 2005, 34:167-180.
  • [167]Kluge AG: Boine snake phylogeny and research cycles. Misc Publ Mus Zool Univ Mich 1991, 178:1-58.
  • [168]Romer AS: Osteology of the Reptiles. Chicago: University of Chicago Press; 1956.
  • [169]Kelly CMR, Barker NP, Villet MH: Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Syst Biol 2003, 52:439-459.
  • [170]Kraus F, Brown WM: Phylogenetic relationships of colubroid snakes based on mitochondrial DNA sequences. Zool J Linn Soc 1998, 122:455-487.
  • [171]Boulenger GA: Catalogue of snakes in the British Museum. London: British Museum of Natural History; 1894.
  • [172]Guo P, Wu Y, He S, Shi H, Zhao E: Systematics and molecular phylogenetics of Asian snail-eating snakes (Pareatidae). Zootaxa 2011, 3001:57-64.
  • [173]Garrigues T, Dauga C, Ferquel E, Choumet V, Failloux AB: Molecular phylogeny of Vipera Laurenti, 1768 and the related genera Macrovipera (Reuss, 1927) and Daboia (Gray, 1842), with comments about neurotoxic Vipera aspis aspis populations. Mol Phylogenet Evol 2005, 35:35-47.
  • [174]Lenk P, Kalyabina S, Wink M, Joger U: Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 2001, 19:94-104.
  • [175]Castoe TA, Parkinson CL: Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol Phylogenet Evol 2006, 39:91-110.
  • [176]Fenwick AM, Gutberlet RL, Evans JA, Parkinson CL: Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zool J Linn Soc 2009, 156:617-640.
  • [177]Kelly CMR, Branch WR, Broadley DG, Barker NP, Villet MH: Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol Phylogenet Evol 2011, 58:415-426.
  • [178]Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, Wink M, Cruaud C, Joger U, Nagy ZT: Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia). Zootaxa 2008, 1945:51-66.
  • [179]Sanders KL, Lee MSY, Leys R, Foster R, Keogh JS: Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J Evol Biol 2008, 21:682-695.
  • [180]Sanders KL, Lee MSY: Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes (Elapidae, Colubroidea). Mol Phylogenet Evol 2008, 46:1165-1173.
  • [181]Chen X, Huang S, Guo P, Colli GR, de Oca AN M, Vitt LJ, Pyron RA, Burbrink FT: Understanding the formation of ancient intertropical disjunct distributions using Asian and Neotropical hinged-teeth snakes (Sibynophis and Scaphiodontophis: Serpentes: Colubridae). Mol Phylogenet Evol 2012, 66:254-261.
  • [182]Huang S, Liu SY, Guo P, Zhang YP, Zhao EM: What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau? Mol Phylogenet Evol 2009, 51:438-446.
  • [183]He M, Feng JC, Liu SY, Guo P, Zhao EM: The phylogenetic position of Thermophis (Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang Plateau, China. J Nat Hist 2009, 43:479-488.
  • [184]Socha JJ: Gliding flight in Chrysopelea: turning a snake into a wing. Integr Comp Biol 2011, 51:969-982.
  • [185]Helfenberger N: Phylogenetic relationship of Old World ratsnakes based on visceral organ topography, osteology, and allozyme variation. Russ J Herp 2001, 8:1-56.
  • [186]Alfaro ME, Arnold SJ: Molecular systematics and evolution of Regina and the Thamnophiine snakes. Mol Phylogenet Evol 2001, 21:408-423.
  • [187]de Queiroz A, Lawson R, Lemos-Espinal JA: Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Mol Phylogenet Evol 2002, 22:315-329.
  • [188]Cope ED: Eleventh contribution to the herpetology of tropical America: Dugés, A. Proc Amer Philos Soc 1879, 18:261-277.
  • [189]Fitzinger L: Systema Reptilium. Fasciculus Primus, Amblyglossae. Vienna: Apud Braumüller and Seidel Bibliopolas; 1843.
  • [190]Vidal N, Dewynter M, Gower DJ: Dissecting the major American snake radiation: a molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). CR Biol 2010, 333:48-55.
  • [191]Caldwell MW: Squamate phylogeny and the relationships of snakes and mosasauroids. Zool J Linn Soc 1999, 125:115-147.
  • [192]Heath TA, Hedtke SM, Hillis DM: Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 2008, 46:239-257.
  • [193]Hedtke SM, Townsend TM, Hillis DM: Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 2006, 55:522-529.
  • [194]Rannala B, Huelsenbeck JP, Yang ZH, Nielsen R: Taxon sampling and the accuracy of large phylogenies. Syst Biol 1998, 47:702-710.
  • [195]Poe S, Swofford DL: Taxon sampling revisited. Nature 1999, 398:299-300.
  • [196]Fisher-Reid MC, Wiens JJ: What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. BMC Evol Biol 2011, 11:300. BioMed Central Full Text
  • [197]McMahon MM, Sanderson MJ: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes. Syst Biol 2006, 55:818-836.
  • [198]Lemmon AR, Emme SA, Lemmon EM: Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 2012, 61:727-744.
  • [199]Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC: Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 2012, 61:717-726.
  • [200]Crawford NG, Faircloth BC, McCormack JE, Brumfield D, Winker K, Glenn TC: More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 2012, 8:783-786.
  • [201]Edwards SV, Liu L, Pearl DK: High-resolution species trees without concatenation. Proc Natl Acad Sci USA 2007, 104:5936-5941.
  • [202]Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010, 27:570-580.
  • [203]Ricklefs RE, Losos JB, Townsend TM: Evolutionary diversification of clades of squamate reptiles. J Evol Biol 2007, 20:1751-1762.
  • [204]Brandley MC, Huelsenbeck JP, Wiens JJ: Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution 2008, 62:2042-2064.
  • [205]Pyron RA, Burbrink FT: Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa 2009, 2241:22-32.
  • [206]Pyron RA: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 2010, 59:185-194.
  • [207]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [208]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [209]Stamatakis A, Aberer AJ, Goll C, Smith SA, Berger SA, Izquierdo-Carrasco F: RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics 2012, 28:2064-2066.
  • [210]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [211]Felsenstein J: Inferring Phylogenies. Sunderland: Sinauer Associates; 2004.
  • [212]Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O: Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 2011, 60:685-699.
  • [213]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [214]Schneider JG: Historiae Amphibiorum Naturalis et Literariae. Fasciculus Secundus continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues, Amphisbaenas et Caecilias. Jena: Frommani; 1801.
  • [215]McDowell SB: A catalog of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop museum. Part III. Boinae and Acrochordoidea (Reptilia, Serpentes). J Herp 1979, 13:1-92.
  文献评价指标  
  下载次数:230次 浏览次数:14次