期刊论文详细信息
BMC Medical Imaging
Intelligent neonatal monitoring based on a virtual thermal sensor
Steffen Leonhardt1  Abbas K Abbas1 
[1] Philips Chair for Medical Information Technology (MedIT), RWTH Aachen University, Pauwelsstr. 20, D 52074 Aachen, Germany
关键词: ROI tracking;    Thermal signature;    ROI matching;    Virtual sensor;    Neonatal incubator;    Thermography imaging;   
Others  :  1217008
DOI  :  10.1186/1471-2342-14-9
 received in 2013-06-24, accepted in 2014-02-12,  发布年份 2014
PDF
【 摘 要 】

Background

Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes.

Methods

Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate’s geometry.

Results

The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate’s body surface.

Conclusions

This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate’s skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming.

【 授权许可】

   
2014 Abbas and Leonhardt; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150704020139864.pdf 1970KB PDF download
Figure 11. 110KB Image download
Figure 10. 81KB Image download
Figure 9. 79KB Image download
Figure 8. 127KB Image download
Figure 7. 99KB Image download
Figure 6. 63KB Image download
Figure 5. 92KB Image download
Figure 4. 88KB Image download
Figure 3. 78KB Image download
Figure 2. 83KB Image download
Figure 1. 102KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Clark RP, Stothers JK: Neonatal skin temperature distribution using infra-red colour thermography. J Physiol 1980, 302:323-333.
  • [2]Christidis I, Zotter H, Rosegger H, Engele H, Kurz R, Kerbl R: Infrared thermography in newborns: the first hour after birth. Gynakol Geburtshilfliche Rundsch 2003, 43:31-35.
  • [3]Adams AK, Nelson RA, Bell EF, Egoavil CA: Use of infrared thermographic calorimetry to determine energy expenditure in preterm infants. Am J Clin Nutr 2000, 71:969-977.
  • [4]Fei J, Pavlidis I: Thermistor at a distance: unobtrusive measurement of breathing. IEEE Trans Biomed Eng 2010, 57:988-998.
  • [5]Fei J, Pavlidis I: Virtual thermistor. Conf Proc IEEE Eng Med Biol Soc 2007, 2007:250-253.
  • [6]Shastri D, Tsiamyrtzis P, Pavlidis I: Periorbital thermal signal extraction and applications. Conf Proc IEEE Eng Med Biol Soc 2008, 2008:102-105.
  • [7]Abbas AK, Heiman K, Jergus K, Orlikowsky T, Leonhardt S, Abbas AK, Heiman K, Jergus K, Orlikowsky T, Leonhardt S: Non-contact respiratory monitoring based on real-time IR-thermography. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009; Munich, Germany. Edited by Dossel O, Schlegel WC. Berlin-Heidelberg: Springer; 2010:1306-1309.
  • [8]Jones BF: A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 1998, 17:1019-1027.
  • [9]Garbey M, Sun N, Merla A, Pavlidis I: Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans Biomed Eng 2007, 54:1418-1426.
  • [10]Fei J, Pavlidis I: Analysis of breathing air flow patterns in thermal imaging. Conf Proc IEEE Eng Med Biol Soc 2006, 1:946-952.
  • [11]Sun N, Pavlidis I, Garbey M, Fei J: Harvesting the thermal cardiac pulse signal. Med Image Comput Comput Assist Interv 2006, 9:569-576.
  • [12]Bhatia M, Poley JR, Haberman JD, Boon DJ: Abdominal thermography in infantile and childhood liver disease. South Med J 1976, 69:1045-1048.
  • [13]Murthy J, van Jaarsveld J, Fei J, Pavlidis I, Karrykissoon RI, Lucke JF, Faiz S, Castriolatta RJ: Thermal infrared imaging: a novel method to monitor airflow during polysomnography. Sleep 2009, 32:1521-1527.
  • [14]Fei J, Pavlidis I, Murthy J: Thermal vision for sleep apnea monitoring. Med Image Comput Comput Assist Interv 2009, 12:1084-1091.
  • [15]Ng EY, Chen Y, Ung LN: Computerized breast thermography: study of image segmentation and temperature cyclic variations. J Med Eng Technol 2001, 25:12-16.
  • [16]Buddharaju P, Pavlidis IT, Tsiamyrtzis P, Bazakos M: Physiology-based face recognition in the thermal infrared spectrum. IEEE Trans Pattern Anal Mach Intell 2007, 29:613-626.
  • [17]Abbas AK, Leonhardt S: NIRT pattern classification based on ICA clustering algorithm. Aachen Germany, FWS: Farbbildverarbeitung Workshop; 2008.
  • [18]Saxena AK, Willital GH: Infrared thermography: experience from a decade of pediatric imaging. Eur J Pediatr 2008, 167:757-764.
  • [19]Abbas AK, Heimann K, Blazek V, Orlikowsky T, Leonhardt S: Neonatal infrared thermography imaging: analysis of heat flux during different clinical scenarios. Infrared Phys Technol 2012, 55(6):538-548. ISSN 1350-4495, http://dx.doi.org/10.1016/j.infrared.2012.07.001 webcite
  • [20]Abbas AK, Heiman K, Jergus K, Orlikowsky T, Leonhardt S: Neonatal monitoring technologies: Design for integrated solutions. In Neonatal Infrared Thermography Imaging. Volume 1. Edited by Oetomo SB, Chen W, Feijs L. Hershey, Pennsylvania: IGI Global Publishing; 2012:84-124.
  • [21]Pavlidis I, Levine J: Thermal image analysis for polygraph testing. IEEE Eng Med Biol Mag 2002, 21:56-64.
  • [22]Mital M, Scott EP: Thermal detection of embedded tumors using infrared imaging. J Biomech Eng 2007, 129:33-39.
  • [23]Moskowitz M: Efficacy of computerized infrared imaging. Am J Roentgenol 2003, 181:596.
  • [24]Rousselet GA, Mace MJ, Thorpe SJ, Fabre-Thorpe M: Limits of event-related potential differences in tracking object processing speed. J Cogn Neurosci 2007, 19:1241-1258.
  • [25]Lalonde M, Beaulieu M, Gagnon L: Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 2001, 20:1193-1200.
  • [26]Marks TK, Hershey JR, Movellan JR: Tracking motion, deformation, and texture using conditionally gaussian processes. IEEE Trans Pattern Anal Mach Intell 2010, 32:348-363.
  • [27]Zhou Y, Tsiamyrtzis P, Pavlidis IT: Tissue tracking in thermo-physiological imagery through spatio-temporal smoothing. Med Image Comput Comput Assist Interv 2009, 12:1092-1099.
  • [28]Zulkifley MA, Rawlinson D, Moran B: Robust observation detection for single object tracking: deterministic and probabilistic patch-based approaches. Sensors (Basel) 2012, 12:15638-15670.
  • [29]Sheng Y-M, Xiu R-J: Automated method for tracking vasomotion of intravital microvascular and microlymphatic vessels. Clin Hemorheol Microcirc 2012, 52:37-48.
  • [30]Lin Y-H, Chen C-H: Template matching using the parametric template vector with translation, rotation and scale invariance. Pattern Recogn 2008, 41(7):2413-2421. DOI = 10.1016/j.patcog.2008.01.017
  • [31]Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans Pattern Anal Mach Intell 2009, 31:319-336.
  • [32]Lu C, Zhou G: Template match using local feature with view invariance. Proc. SPIE 8919, MIPPR 2013. Pattern Recognition and Computer Vision, 89190C (October 27, 2013); doi:10.1117/12.2031068
  • [33]Höwing F, Dooley LS, Wermser D: Tracking of non-rigid articulatory organs in X-ray image sequences. Comput Med Imaging Graph 1999, 23:59-67.
  • [34]Sun N, Pavlidis I: Counting heartbeats at a distance. Conf Proc IEEE Eng Med Biol Soc 2006, 1:228-231.
  • [35]Krüger V, Sommer G: Wavelet networks for face processing. J Opt Soc Am A Opt Image Sci Vis 2002, 19:1112-1119.
  • [36]Ng EY, Fok SC, Peh YC, Ng FC, Sim LS: Computerized detection of breast cancer with artificial intelligence and thermograms. J Med Eng Technol 2002, 26:152-157.
  • [37]Zhu Z, Tsiamyrtzis P, Pavlidis I: Forehead thermal signature extraction in lie detection. Conf Proc IEEE Eng Med Biol Soc 2007, 2007:243-246.
  • [38]Shastri D, Merla A, Tsiamyrtzis P, Pavlidis I: Imaging facial signs of neurophysiological responses. IEEE Trans Biomed Eng 2009, 56:477-484.
  • [39]Pernkopf F: Tracking of multiple targets using online learning for reference model adaptation. IEEE Trans Syst Man Cybern B Cybern 2008, 38:1465-1475.
  • [40]Weiss ME, Poeltler D, Gocka I: Infrared tympanic thermometry for neonatal temperature assessment. J Obstet Gynecol Neonatal Nurs 1994, 23:798-804.
  • [41]Pimentel JA, Corkidi G: Three dimensional template matching segmentation method for motile cells in 3D + t video sequences. Conf Proc IEEE Eng Med Biol Soc 2010, 2010:4777-4780.
  • [42]Lin W-Y, Lin SF, Yang SC, Liou SC, Nath R, Liu W: Real-time automatic fiducial marker tracking in low contrast cine-MV images. Med Phys 2013, 40:011715.
  • [43]Abbas AK, Heimann K, Jergus K, Orlikowsky T, Leonhardt S: Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online 2011, 10:93.
  • [44]Wang H, Oliensis J: Rigid shape matching by segmentation averaging. IEEE Trans Pattern Anal Mach Intell 2010, 32:619-635.
  • [45]Banitalebi H, Bangstad H-J: Measurement of fever in children–is infrared tympanic thermometry reliable? Tidsskr Nor Laegeforen 2002, 122:2700-2701.
  • [46]Pavlidis I, Eberhardt NL, Levine JA: Seeing through the face of deception. Nature 2002, 415:35.
  文献评价指标  
  下载次数:122次 浏览次数:39次