| BMC Microbiology | |
| Quantitative analysis of the Brucella suis proteome reveals metabolic adaptation to long-term nutrient starvation | |
| Stephan Köhler3  Heinrich Neubauer1  Véronique Jubier-Maurin3  Sascha Al Dahouk2  | |
| [1] Friedrich-Loeffler-Institut, National Reference Laboratories for Brucella spec. Infections, Naumburgerstraβe 96a, D-07743, Jena, Germany;Department of Internal Medicine III, RWTH Aachen University, Pauwelsstraße 30, D-52074, Aachen Germany;Université Montpellier II, CPBS, F-34095, Montpellier, France | |
| 关键词: 2D-DIGE; Starvation; Proteome; Persistence; Brucella; | |
| Others : 1143169 DOI : 10.1186/1471-2180-13-199 |
|
| received in 2013-03-30, accepted in 2013-09-02, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
During the infection process, bacteria are confronted with various stress factors including nutrient starvation. In an in vitro model, adaptation strategies of nutrient-starved brucellae, which are facultative intracellular pathogens capable of long-term persistence, were determined.
Results
Long-term nutrient starvation in a medium devoid of carbon and nitrogen sources resulted in a rapid decline in viability of Brucella suis during the first three weeks, followed by stabilization of the number of viable bacteria for a period of at least three weeks thereafter. A 2D-Difference Gel Electrophoresis (DIGE) approach allowed the characterization of the bacterial proteome under these conditions. A total of 30 proteins showing altered concentrations in comparison with bacteria grown to early stationary phase in rich medium were identified. More than half of the 27 significantly regulated proteins were involved in bacterial metabolism with a marked reduction of the concentrations of enzymes participating in amino acid and nucleic acid biosynthesis. A total of 70% of the significantly regulated proteins showed an increased expression, including proteins involved in the adaptation to harsh conditions, in regulation, and in transport.
Conclusions
The adaptive response of Brucella suis most likely contributes to the long-term survival of the pathogen under starvation conditions, and may play a key role in persistence.
【 授权许可】
2013 Al Dahouk et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150329011813501.pdf | 661KB | ||
| Fig. 1. | 34KB | Image | |
| Figure 2. | 94KB | Image | |
| Figure 1. | 39KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Fig. 1.
【 参考文献 】
- [1]Pappas G, Akritidis N, Bosilkovski M, Tsianos E: Brucellosis. N Engl J Med 2005, 352:2325-2336.
- [2]Franco MP, Mulder M, Gilman RH, Smits HL: Human brucellosis. Lancet Infect Dis 2007, 7:775-786.
- [3]Köhler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP: The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA 2002, 99:15711-15716.
- [4]Köhler S, Porte F, Jubier-Maurin V, Ouahrani-Bettache S, Teyssier J, Liautard JP: The intramacrophagic environment of Brucella suis and bacterial response. Vet Microbiol 2002, 90:299-309.
- [5]Rovery C, Rolain JM, Raoult D, Brouqui P: Shell vial culture as a tool for isolation of Brucella melitensis in chronic hepatic abscess. J Clin Microbiol 2003, 41:4460-4461.
- [6]Wayne LG: Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 1994, 13:908-914.
- [7]Loebel RO, Shorr E, Richardson HB: The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 1933, 26:139-166.
- [8]Loebel RO, Shorr E, Richardson HB: The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 1933, 26:167-200.
- [9]Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K: Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 2002, 43:717-731.
- [10]Wagner MA, Eschenbrenner M, Horn TA, Kraycer JA, Mujer CV, Hagius S, Elzer P, DelVecchio VG: Global analysis of the Brucella melitensis proteome: Identification of proteins expressed in laboratory-grown culture. Proteomics 2002, 2:1047-1060.
- [11]Teixeira-Gomes AP, Cloeckaert A, Zygmunt MS: Characterization of heat, oxidative, and acid stress responses in Brucella melitensis. Infect Immun 2000, 68:2954-2961.
- [12]Connolly JP, Comerci D, Alefantis TG, Walz A, Quan M, Chafin R, Grewal P, Mujer CV, Ugalde RA, DelVecchio VG: Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 2006, 6:3767-3780.
- [13]Al Dahouk S, Jubier-Maurin V, Scholz HC, Tomaso H, Karges W, Neubauer H, Köhler S: Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection. Proteomics 2008, 8:3862-3870.
- [14]Al Dahouk S, Loisel-Meyer S, Scholz HC, Tomaso H, Kersten M, Harder A, Neubauer H, Köhler S, Jubier-Maurin V: Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways. Proteomics 2009, 9:3011-3021.
- [15]Lamontagne J, Forest A, Marazzo E, Denis F, Butler H, Michaud JF, Boucher L, Pedro I, Villeneuve A, Sitnikov D, et al.: Intracellular adaptation of Brucella abortus. J Proteome Res 2009, 8:1594-1609.
- [16]Crawford RP, Huber JD, Adams BS: Epidemiology and surveillance. In Animal Brucellosis. Edited by Nielsen K, Duncan JR. Boca Raton: CRC Press; 1990:131-151.
- [17]Scholz HC, Hubalek Z, Nesvadbova J, Tomaso H, Vergnaud G, Le Flèche P, Whatmore AM, Al Dahouk S, Krüger M, Lodri C, et al.: Isolation of Brucella microti from soil. Emerg Infect Dis 2008, 14:1316-1317.
- [18]Nyka W: Studies on the effect of starvation on mycobacteria. Infect Immun 1974, 9:843-850.
- [19]Smeulders MJ, Keer J, Speight RA, Williams HD: Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol 1999, 181:270-283.
- [20]Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, et al.: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 2002, 99:13148-13153.
- [21]Nair S, Finkel SE: Dps protects cells against multiple stresses during stationary phase. J Bacteriol 2004, 186:4192-4198.
- [22]Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND: Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 2002, 277:27689-27696.
- [23]Frenkiel-Krispin D, Ben-Avraham I, Englander J, Shimoni E, Wolf SG, Minsky A: Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 2004, 51:395-405.
- [24]Sampson BA, Misra R, Benson SA: Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 1989, 122:491-501.
- [25]Abe S, Okutsu T, Nakajima H, Kakuda N, Ohtsu I, Aono R: n-Hexane sensitivity of Escherichia coli due to low expression of imp/ostA encoding an 87 kDa minor protein associated with the outer membrane. Microbiology 2003, 149:1265-1273.
- [26]Braun M, Silhavy TJ: Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol Microbiol 2002, 45:1289-1302.
- [27]Jenkins DE, Auger EA, Matin A: Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 1991, 173:1992-1996.
- [28]Köhler S, Teyssier J, Cloeckaert A, Rouot B, Liautard JP: Participation of the molecular chaperone DnaK in intracellular growth of Brucella suis within U937-derived phagocytes. Mol Microbiol 1996, 20:701-712.
- [29]Cheng HP, Walker GC: Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 1998, 180:5183-5191.
- [30]Wu Q, Pei J, Turse C, Ficht TA: Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 2006, 6:102. BioMed Central Full Text
- [31]Arenas-Gamboa AM, Rice-Ficht AC, Kahl-McDonagh MM, Ficht TA: Protective efficacy and safety of Brucella melitensis 16MΔmucR against intraperitoneal and aerosol challenge in BALB/c mice. Infect Immun 2011, 79:3653-3658.
- [32]Kasahara M, Makino K, Amemura M, Nakata A, Shinagawa H: Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promoters. J Bacteriol 1991, 173:549-558.
- [33]Castaneda-Roldan EI, Ouahrani-Bettache S, Saldana Z, Avelino F, Rendon MA, Dornand J, Giron JA: Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol 2006, 8:1877-1887.
- [34]Almiron MA, Ugalde RA: Iron homeostasis in Brucella abortus: the role of bacterioferritin. J Microbiol 2010, 48:668-673.
- [35]Hong PC, Tsolis RM, Ficht TA: Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 2000, 68:4102-4107.
- [36]Chatterji D, Ojha AK: Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 2001, 4:160-165.
- [37]Holmgren A: Thioredoxin and glutaredoxin systems. J Biol Chem 1989, 264:13963-13966.
- [38]Antelmann H, Engelmann S, Schmid R, Hecker M: General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 1996, 178:6571-6578.
- [39]Steele KH, Baumgartner JE, Valderas MW, Roop RM 2nd: Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J Bacteriol 2010, 192:4912-4922.
- [40]Marr AG, Wilson JB: Fixation of C14O2 in amino acids by Brucella abortus. Arch Biochem Biophys 1951, 34:442-448.
- [41]Newton JW, Marr AG, Wilson JB: Fixation of C14O2 into nucleic acid constituents by Brucella abortus. J Bacteriol 1954, 67:233-236.
- [42]Gerhardt P, Wilson JB: The nutrition of brucellae: growth in simple chemically defined media. J Bacteriol 1948, 56:17-24.
- [43]Unlu M, Morgan ME, Minden JS: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18:2071-2077.
PDF