期刊论文详细信息
BMC Nephrology
Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
Joseph P Grande3  Stephen C Textor3  Lilach O Lerman3  Bruce E Knudsen1  Stella P Hartono2 
[1] Department of Laboratory Medicine & Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;Medical Scientist Training Program, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;Division of Nephrology & Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
关键词: Inflammation;    Renovascular hypertension;    Renal artery stenosis;    Hypertension;    Diabetes;   
Others  :  1228751
DOI  :  10.1186/1471-2369-15-58
 received in 2013-10-16, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

Hypertension is a major risk factor for renal disease progression. However, the mechanisms by which hypertension aggravates the effects of diabetes on the kidney are incompletely understood. We tested the hypothesis that renovascular hypertension accelerates angiotensin-II-dependent kidney damage and inflammation in the db/db mouse, a model of type II diabetes.

Methods

Renovascular hypertension was established in db/db and wild-type control mice through unilateral renal artery stenosis (RAS); the non-stenotic contralateral kidneys evaluated 2, 4 and 6 weeks later. Angiotensin-II infusion (1000 ng/kg/min), unilateral nephrectomy, or both were also performed in db/db mice to discern the contributions of hypertension versus hyperfiltration to development of chronic renal injury in db/db mice with RAS. The effect of blood pressure reduction in db/db mice with RAS was assessed using angiotensin-receptor-blocker (ARB) or hydralazine treatment.

Results

Db/db mice with renovascular hypertension developed greater and more prolonged elevation of renin activity than all other groups studied. Stenotic kidneys of db/db mice developed progressive interstitial fibrosis, tubular atrophy, and interstitial inflammation. Contralateral kidneys of wild type mice with RAS showed minimal histopathologic abnormalities, whereas db/db mice with RAS developed severe diffuse mesangial sclerosis, interstitial fibrosis, tubular atrophy, and interstitial inflammation. Db/db mice with Angiotensin II-induced hypertension developed interstitial lesions and albuminuria but not mesangial matrix expansion, while nephrectomized db/db mice exhibited modest mesangial expansion and interstitial fibrosis, but not significant albuminuria. The combination of unilateral nephrectomy and angiotensin II infusion reproduced all the features of the injury albeit in a less severe manner. ARB and hydralazine were equally effective in attenuating the development of mesangial expansion in the contralateral kidneys of db/db mice with RAS. However, only ARB prevented elevation of urinary albumin/creatinine in db/db mice with RAS.

Conclusion

Renovascular hypertension superimposed on diabetes exacerbates development of chronic renal disease in db/db mice at least in part through interaction with the renin-angiotensin system. Both ARB and hydralazine were equally effective in reducing systolic blood pressure and in preventing renal injury in the contralateral kidney of db/db mice with renal artery stenosis. ARB but not hydralazine prevented elevation of urinary albumin/creatinine in the db/db RAS model.

【 授权许可】

   
2014 Hartono et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151019021506387.pdf 1866KB PDF download
Figure 8. 268KB Image download
Figure 7. 35KB Image download
Figure 6. 88KB Image download
Figure 5. 178KB Image download
Figure 4. 96KB Image download
Figure 3. 106KB Image download
Figure 2. 209KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011 Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.
  • [2]Valabhji J, Robinson S, Poulter C, Robinson AC, Kong C, Henzen C, Gedroyc WM, Feher MD, Elkeles RS: Prevalence of renal artery stenosis in subjects with type 2 diabetes and coexistent hypertension. Diab Care 2000, 23(4):539-543.
  • [3]Myers DI, Poole LJ, Imam K, Scheel PJ, Eustace JA: Renal artery stenosis by three-dimensional magnetic resonance angiography in type 2 diabetics with uncontrolled hypertension and chronic renal insufficiency: prevalence and effect on renal function. Am J Kidney Dis 2003, 41(2):351-359.
  • [4]Hajsadeghi S, Fereshtehnejad SM, Pourshirmohammadi-Sabzevari M, Khamseh ME, Noohi F: Renal artery stenosis in hypertensive patients with or without type 2 diabetes: a comparative magnetic resonance angiography study. Arch Iran Med 2009, 12(3):250-255.
  • [5]Warner GM, Cheng J, Knudsen BE, Gray CE, Deibel A, Juskewitch JE, Lerman LO, Textor SC, Nath KA, Grande JP: Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol 2012, 302(11):F1455-F1464.
  • [6]Lorenz JN, Lasko VM, Nieman ML, Damhoff T, Prasad V, Beierwaltes WH, Lingrel JB: Renovascular hypertension using a modified two-kidney, one-clip approach in mice is not dependent on the α1 or α2 Na-K-ATPase ouabain-binding site. Am J Physiol Renal Physiol 2011, 301(3):F615-F621.
  • [7]Levine DZ, Iacovitti M, Robertson SJ: Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. II. Effects of renal mass reduction. Am J Physiol Regul Integr Comp Physiol 2008, 294(6):R1840-R1846.
  • [8]Ninichuk V, Khandoga AG, Segerer S, Loetscher P, Schlapbach A, Revesz L, Feifel R, Khandoga A, Krombach F, Nelson PJ, Schlondorff D, Anders HJ: The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol 2007, 170(4):1267-1276.
  • [9]Fraune C, Lange S, Krebs C, Hölzel A, Baucke J, Divac N, Schwedhelm E, Streichert T, Velden J, Garrelds IM, Danser AH, Frenay AR, van Goor H, Jankowski V, Stahl R, Nguyen G, Wenzel UO: AT1 antagonism and renin inhibition in mice: pivotal role of targeting angiotensin II in chronic kidney disease. Am J Physiol Renal Physiol 2012, 303(7):F1037-F1048.
  • [10]Textor SC, Lerman L: Renovascular hypertension and ischemic nephropathy. Am J Hypertens 2010, 23(11):1159-1169.
  • [11]Kobori H, Nangaku M, Navar LG, Nishiyama A: The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007, 59(3):251-287.
  • [12]Brewster UC, Setaro JF, Perazella MA: The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 2003, 326(1):15-24.
  • [13]Langham RG, Kelly DJ, Gow RM, Zhang Y, Cordonnier DJ, Pinel N, Zaoui P, Gilbert RE: Transforming growth factor-beta in human diabetic nephropathy: effects of ACE inhibition. Diab Care 2006, 29(12):2670-2675.
  • [14]Hartono SP, Knudsen BE, Zubair AS, Nath KA, Textor SJ, Lerman LO, Grande JP: Redox signaling is an early event in the pathogenesis of renovascular hypertension. Int J Mol Sci 2013, 14(9):18640-18656.
  • [15]Berkman J, Rifkin H: Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel-Wilson): report of a case. Metabol Clin Exp 1973, 22(5):715-722.
  • [16]Cheng J, Zhou W, Warner GM, Knudsen BE, Garovic VD, Gray CE, Lerman LO, Platt JL, Romero JC, Textor SC, Nath KA, Grande JP: Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension. Am J Physiol Ren Physiol 2009, 297(4):F1055-F1068.
  • [17]Urbieta-Caceres VH, Lavi R, Zhu XY, Crane JA, Textor SC, Lerman A, Lerman LO: Early atherosclerosis aggravates the effect of renal artery stenosis on the swine kidney. Am J Physiol Ren Physiol 2010, 299(1):F135-F140.
  • [18]Eirin A, Gloviczki ML, Tang H, Gossl M, Jordan KL, Woollard JR, Lerman A, Grande JP, Textor SC, Lerman LO: Inflammatory and injury signals released from the post-stenotic human kidney. Eur Heart J 2013, 34(7):540-548.
  • [19]Eirin A, Zhu XY, Woollard JR, Herrmann SM, Gloviczki ML, Saad A, Juncos LA, Calhoun DA, Rule AD, Lerman A, Textor SC, Lerman LO: Increased Circulating Inflammatory Endothelial Cells in Blacks With Essential Hypertension. Hypertension 2013, 62(3):585-591.
  • [20]Park S, Bivona BJ, Feng Y, Lazartigues E, Harrison-Bernard LM: Intact renal afferent arteriolar autoregulatory responsiveness in db/db mice. Am J Physiol Ren Physiol 2008, 295(5):F1504-F1511.
  • [21]Brezniceanu ML, Liu F, Wei CC, Chenier I, Godin N, Zhang SL, Filep JG, Ingelfinger JR, Chan JS: Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 2008, 57(2):451-459.
  • [22]Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R: Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 2000, 14(3):439-447.
  • [23]Guo C, Martinez-Vasquez D, Mendez GP, Toniolo MF, Yao TM, Oestreicher EM, Kikuchi T, Lapointe N, Pojoga L, Williams GH, Ricchiuti V, Adler GK: Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 2006, 147(11):5363-5373.
  • [24]Moriyama T, Oka K, Ueda H, Imai E: Nilvadipine attenuates mesangial expansion and glomerular hypertrophy in diabetic db/db mice, a model for type 2 diabetes. Clin Exp Nephrol 2004, 8(3):230-236.
  • [25]Su W, Guo Z, Randall DC, Cassis L, Brown DR, Gong MC: Hypertension and disrupted blood pressure circadian rhythm in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol 2008, 295(4):H1634-H1641.
  • [26]Wang D, Warner GM, Yin P, Knudsen BE, Cheng J, Butters KA, Lien KR, Gray CE, Garovic VD, Lerman LO, Textor SC, Nath KA, Simari RD, Grande JP: Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model. Am J Physiol Heart Circ Physiol 2013, 304(7):F938-F947.
  • [27]Hong SW, Isono M, Chen S, Iglesias-De La Cruz MC, Han DC, Ziyadeh FN: Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol 2001, 158(5):1653-1663.
  • [28]Like AA, Lavine RL, Poffenbarger PL, Chick WL: Studies in the diabetic mutant mouse. VI. Evolution of glomerular lesions and associated proteinuria. Am J Pathol 1972, 66(2):193-224.
  • [29]Lubec B, Rokitansky A, Hayde M, Aufricht C, Wagner U, Mallinger WR, Hoger H, Lubec G: Thiaproline reduces glomerular basement membrane thickness and collagen accumulation in the db/db mouse. Nephron 1994, 66(3):333-336.
  • [30]Mitani H, Ishizaka N, Aizawa T, Ohno M, Usui S, Suzuki T, Amaki T, Mori I, Nakamura Y, Sato M, Nangaku M, Hirata Y, Nagai R: In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 2002, 39(4):838-843.
  • [31]Jennings BL, Anderson LJ, Estes AM, Yaghini FA, Fang XR, Porter J, Gonzalez FJ, Campbell WB, Malik KU: Cytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice. Hypertension 2012, 59(2):348-354.
  • [32]Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, Eulberg D, Buchner K, Selve N, Klussmann S, Anders HJ: Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3’PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol 2008, 172(3):628-637.
  • [33]Ninichuk V, Kulkarni O, Clauss S, Anders H: Tubular atrophy, interstitial fibrosis, and inflammation in type 2 diabetic db/db mice. An accelerated model of advanced diabetic nephropathy. Eur J Med Res 2007, 12(8):351-355.
  • [34]Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH: Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 2007, 50(2):471-480.
  • [35]Manhiani MM, Quigley JE, Socha MJ, Motamed K, Imig JD: IL6 suppression provides renal protection independent of blood pressure in a murine model of salt-sensitive hypertension. Kidney Blood Press Res 2007, 30(4):195-202.
  • [36]Kanamori H, Matsubara T, Mima A, Sumi E, Nagai K, Takahashi T, Abe H, Iehara N, Fukatsu A, Okamoto H, Kita T, Doi T, Arai H: Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun 2007, 360(4):772-777.
  • [37]Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K: Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int 2000, 58(2):684-690.
  • [38]Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda SI, Takasawa K, Yoshimura M, Kida H, Kobayashi KI, Mukaida N, Naito T, Matsushima K, Yokoyama H: Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000, 58(4):1492-1499.
  • [39]Kiyici S, Erturk E, Budak F, Ersoy C, Tuncel E, Duran C, Oral B, Sigirci D, Imamoglu S: Serum monocyte chemoattractant protein-1 and monocyte adhesion molecules in type 1 diabetic patients with nephropathy. Arch Med Res 2006, 37(8):998-1003.
  • [40]Wada T, Yokoyama H, Su SB, Mukaida N, Iwano M, Dohi K, Takahashi Y, Sasaki T, Furuichi K, Segawa C, Hisada Y, Ohta S, Takasawa K, Kobayashi K, Matsushima K: Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis. Kidney Int 1996, 49(3):761-767.
  • [41]Eddy AA, Giachelli CM: Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 1995, 47(6):1546-1557.
  • [42]Takaya K, Koya D, Isono M, Sugimoto T, Sugaya T, Kashiwagi A, Haneda M: Involvement of ERK pathway in albumin-induced MCP-1 expression in mouse proximal tubular cells. Am J Physiol Renal Physiol 2003, 284(5):F1037-F1045.
  文献评价指标  
  下载次数:60次 浏览次数:6次