期刊论文详细信息
BMC Infectious Diseases
Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus
Hidemi Goto1  Naoki Ohmiya1  Ryoji Miyahara1  Masanao Nakamura1  Kohei Funasaka1  Osamu Watanabe1  Osamu Maeda1  Kazuhiro Ishiguro1  Takafumi Ando1  Ning Liu1 
[1] Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, Japan
关键词: Barrett’s esophagus;    Esophagitis;    16S rDNA;    Bacterial biota;   
Others  :  1170993
DOI  :  10.1186/1471-2334-13-130
 received in 2012-10-02, accepted in 2013-03-06,  发布年份 2013
PDF
【 摘 要 】

Background

The distal esophagus harbors a complex bacterial population. We hypothesized that a better understanding of bacterial communities in the esophagus would facilitate understanding of the role of bacteria in esophageal disease. Here, we investigated bacterial composition in the distal esophagus in subjects with a normal esophagus, reflux esophagitis, and Barrett’s esophagus.

Methods

Two biopsy specimens were obtained from the distal esophagus at 1 cm above the gastroesophageal junction under endoscopic examination in 18 patients (6 each with normal esophagus, reflux esophagitis, and Barrett’s esophagus) and used for histological examination and DNA extraction. Fragments of 16S rDNA genes were amplified by PCR using general bacterial primers, and bacterial populations were examined. A third biopsy specimen was taken from the patients with Barrett’s esophagus to histologically confirm the replacement of squamous epithelium with columnar epithelium in the distal esophagus.

Results

Endoscopic diagnoses of normal esophagus, esophagitis, and Barrett’s esophagus were confirmed by histological findings. The total amount of bacterial DNA detected did not significantly differ among groups (p > 0.1). On average, each of the 18 subjects yielded about 350 clones, of which 40 were randomly picked and sequenced. Analysis of 147 16S rDNA sequences from 240 clones of 6 subjects with normal esophagus yielded four phyla, Proteobacteria (49%), Firmicutes (40%), Bacteroidetes (8%), and Actinobacteria (3%). Similar analysis of 139 16S rDNA sequences from 240 clones of 6 patients with reflux esophagitis yielded 6 phyla, Proteobacteria (43%), Firmicutes (33%), Bacteroidetes (10%), Fusobacteria (10%), Actinobacteria (2%), and TM7 (2%). while that of 138 16S rDNA sequences from 240 clones of 6 cases of Barrett’s esophagus yielded 5 phyla, Firmicutes (55%), Proteobacteria (20%), Bacteroidetes (14%), Fusobacteria (9%), and Actinobacteria (2%). Thus, microbial communities differed among patients with a normal esophagus, reflux esophagitis and Barrett’s esophagus.

Conclusions

Esophageal bacterial composition differs under conditions of normal esophagus, reflux esophagitis, and Barrett’s esophagus. Diverse bacterial communities may be associated with esophageal disease.

【 授权许可】

   
2013 Ning et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150418024636672.pdf 696KB PDF download
Figure 3. 83KB Image download
Figure 2. 50KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Brown LM, Devesa SS, Chow WH: Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst 2008, 100(16):1184-1187.
  • [2]Tharalson EF, Martinez SD, Garewal HS, Sampliner RE, Cui H, Pulliam G, Fass R: Relationship between rate of change in acid exposure along the esophagus and length of Barrett’s epithelium. Am J Gastroenterol 2002, 97(4):851-856.
  • [3]Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ, Association AG: American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology 2011, 140(3):1084-1091.
  • [4]Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P: Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med 2011, 365(15):1375-1383.
  • [5]Wong BC, Kinoshita Y: Systematic review on epidemiology of gastroesophageal reflux disease in Asia. Clin Gastroenterol Hepatol 2006, 4(4):398-407.
  • [6]Fujimoto K: Review article: prevalence and epidemiology of gastro-oesophageal reflux disease in Japan. Aliment Pharmacol Ther 2004, 20(Suppl 8):5-8.
  • [7]Endo M, Yazawa C, Nakayama K: Endoscopy of early esophageal cancer. Gastroenterologia Japonica 1972, 7(2):107-112.
  • [8]Halfvarson J, Bodin L, Tysk C, Lindberg E, Järnerot G: Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003, 124(7):1767-1773.
  • [9]Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008, 40(8):955-962.
  • [10]Xavier RJ, Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448(7152):427-434.
  • [11]Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y: Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005, 54(Pt 11):1093-1101.
  • [12]Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA: Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 2006, 103(3):732-737.
  • [13]Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ: Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A 2004, 101(12):4250-4255.
  • [14]Gustafsson BE: The physiological importance of the colonic microflora. Scand J Gastroenterol Suppl 1982, 77:117-131.
  • [15]Cunningham-Rundles S, Ahrn S, Abuav-Nussbaum R, Dnistrian A: Development of immunocompetence: role of micronutrients and microorganisms. Nutr Rev 2002, 60(5 Pt 2):S68-S72.
  • [16]Weisburg WG, Barns SM, Pelletier DA, Lane DJ: 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991, 173(2):697-703.
  • [17]Van de Peer Y, Chapelle S, De Wachter R: A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 1996, 24(17):3381-3391.
  • [18]Stackebrandt E, Goebel BM, Taxonomic Note: A place for DNA-DNA reassociation and 16S r-RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994, 44(4):846-849.
  • [19]Foster KR, Wenseleers T: A general model for the evolution of mutualisms. J Evol Biol 2006, 19(4):1283-1293.
  • [20]Gagliardi D, Makihara S, Corsi PR, Viana AT, Wiczer MV, Nakakubo S, Mimica LM: Microbial flora of the normal esophagus. Dis Esophagus 1998, 11(4):248-250.
  • [21]Pajecki D, Zilberstein B, dos Santos MA, Ubriaco JA, Quintanilha AG, Cecconello I, Gama-Rodrigues J: Megaesophagus microbiota: a qualitative and quantitative analysis. J Gastrointest Surg 2002, 6(5):723-729.
  • [22]Guarner F, Malagelada JR: Gut flora in health and disease. Lancet 2003, 361(9356):512-519.
  • [23]Pace NR: A molecular view of microbial diversity and the biosphere. Science 1997, 276(5313):734-740.
  • [24]Hayashi H, Sakamoto M, Benno Y: Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 2002, 46(8):535-548.
  • [25]Ashktorab H, Entezari O, Nouraie M, Dowlati E, Frederick W, Woods A, Lee E, Brim H, Smoot DT, Ghadyari F, Kamangar F, Razjouyan H: Helicobacter pylori protection against reflux esophagitis. Dig Dis Sci 2012, 57(11):2924-2928.
  • [26]Brown LM: Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000, 22(2):283-297.
  • [27]Ho KY, Chan YH, Kang JY: Increasing trend of reflux esophagitis and decreasing trend of Helicobacter pylori infection in patients from a multiethnic Asian country. Am J Gastroenterol 2005, 100(9):1923-1928.
  文献评价指标  
  下载次数:20次 浏览次数:6次