期刊论文详细信息
BMC Genomics
Tandem Duplication and Random Loss for mitogenome rearrangement in Symphurus (Teleost: Pleuronectiformes)
Xiao-Yu Kong1  Xian-Guang Miao1  Shu-Ying Wang1  Li Gong1  Wei Shi1 
[1] CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
关键词: Mitochondrial replication;    OL-like structure;    Gene rearrangement;    Mitogenome;    Flatfish;   
Others  :  1204048
DOI  :  10.1186/s12864-015-1581-6
 received in 2015-01-15, accepted in 2015-04-24,  发布年份 2015
PDF
【 摘 要 】

Background

The mitochondrial genomes (mitogenomes) of flatfishes (Pleuronectiformes) exhibit highly diversified types of large-scale gene rearrangements. We have reported that the mitogenomes of Crossorhombus azureus (Bothidae), Samariscus latus (Samaridae) and Cynoglossus fishes (Cynoglossidae) show different types of gene rearrangements.

Results

In the present study, the complete mitogenomes of two Symphurus species (Cynoglossidae), Symphurus plagiusa and Symphurus orientalis, were determined. The gene order in the S. plagiusa mitogenome is the same as that of a typical vertebrate (without any gene rearrangements). Surprisingly, large-scale gene rearrangements have occurred in S. orientalis. In the rearranged fragment from the control region (CR) to the WANCY tRNA cluster (tRNA cluster of tRNA-W, tRNA-A, tRNA-N, tRNA-C and tRNA-Y) in the S. orientalis mitogenome, tRNA-V and tRNA-M have been translocated to the 3’ end of the 16S rRNA gene, with six large intergenic spacers over 20 bp in length. In addition, an origin for light-strand replication (OL) structure that is typically located in the WANCY region was absent in both the S. plagiusa and S. orientalis mitogenomes. It is generally recognized that a sequence in the WANCY region that encodes tRNAs forms a hairpin structure (OL-like structure) and can act as the OL when the typical locus is lost. Moreover, an additional OL-like structure was identified near the control region in the S. plagiusa mitogenome.

Conclusions

The positions of the intergenic spacers and the rearranged genes of the S. orientalis mitogenome strongly indicate that the mechanism underlying the rearrangement of this mitogenome was Tandem Duplication and Random Loss. Additionally, two OL-like regions substituting for the typical locus were found in the S. plagiusa mitogenome. We speculate that the ancestral mitogenomes of S. plagiusa and S. orientalis also had this characteristic, such that if both OL-like structures functioned during mitochondrial replication, they could initiate duplicate replications of the light strand (L-strand), leading to duplication of the region between the two structures. We consider that this mechanism may account for the gene duplication that occurred during the gene rearrangement process in the evolution of the ancestral mitogenome to the S. orientalis mitogenome.

【 授权许可】

   
2015 Shi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523043535971.pdf 611KB PDF download
20150327124233100.pdf 181KB PDF download
Figure 2. 54KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Boore J. Animal mitochondrial genomes. Nucleic Acids Res. 1999; 27:1767-1780.
  • [2]Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ et al.. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol. 2012; 64(2):342-356.
  • [3]Bensch S, Harlid A. Mitochondrial genomic rearrangements in songbirds. Mol Biol Evol. 2000; 17(1):107-113.
  • [4]Verkuil YI, Piersma T, Baker AJ. A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes). Mol Phylogenet Evol. 2010; 57(1):411-416.
  • [5]Mueller RL, Boore JL. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol. 2005; 22(10):2104-2112.
  • [6]Okajima Y, Kumazawa Y. Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol. 2010; 10:141. BioMed Central Full Text
  • [7]Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol. 1997; 14(1):91-104.
  • [8]Sano N, Kurabayashi A, Fujii T, Yonekawa H, Sumida M. Complete nucleotide sequence of the mitochondrial genome of Schlegel's tree frog Rhacophorus schlegelii (family Rhacophoridae): duplicated control regions and gene rearrangements. Genes Genet Syst. 2005; 80(3):213-224.
  • [9]Inoue JG, Miya M, Tsukamoto K, Nishida M. Evolution of the deep sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. Mol Biol Evol. 2003; 20(11):1917-1924.
  • [10]Kong XY, Dong XL, Zhang YC, Shi W, Wang ZM, Yu ZY. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion. Genome. 2009; 52(12):975-984.
  • [11]Ponce M, Infante C, Jimenez-Cantizano RM, Perez L, Manchado M. Complete mitochondrial genome of the blackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae), with high levels of length heteroplasmy in the WANCY region. Gene. 2008; 409(1–2):44-52.
  • [12]Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M. Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol. 2004; 59(3):287-297.
  • [13]Ki JS, Jung SO, Hwang DS, Lee YM, Lee JS. Unusual mitochondrial genome structure of the freshwater goby Odontobutis platycephala: rearrangement of tRNAs and an additional non-coding region. J Fish Biol. 2008; 73(2):414-428.
  • [14]Gong L, Shi W, Si LZ, Kong XY. Rearrangement of mitochondrial genome in fishes. Zool Res. 2013; 34(6):666-673.
  • [15]Shi W, Jiang JX, Miao XG, Kong XY. The complete mitochondrial genome sequence of Heteromycteris japonicus (Pleuronectiformes: Soleidae). Mitochondrial DNA. 2013; 1:1-2.
  • [16]Manchado M, Catanese G, Ponce M, Funes V, Infante C. The complete mitochondrial genome of the Senegal sole, Solea senegalensis Kaup. Comparative analysis of tandem repeats in the control region among soles. DNA Seq. 2007; 18(3):169-175.
  • [17]Wang SY, Shi W, Wang ZM, Gong L, Kong XY. The complete mitochondrial genome sequence of Aesopia cornuta (Pleuronectiformes: Soleidae). Mitochondrial DNA. 2013; 21:1-2.
  • [18]Fonseca MM, Posada D, Harris DJ. Inverted replication of vertebrate mitochondria. Mol Biol Evol. 2008; 25(5):805-808.
  • [19]Fonseca MM, Harris DJ, Posada D. The Inversion of the Control Region in Three Mitogenomes Provides Further Evidence for an Asymmetric Model of Vertebrate mtDNA Replication. PLoS One. 2014; 9(9): Article ID e106654
  • [20]Shi W, Dong XL, Wang Z-M, Miao X-G, Wang S-Y, Kong X-Y. Complete mitogenome sequences of four flatfishes (Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes. BMC Evol Biol. 2013; 13:173. BioMed Central Full Text
  • [21]Shi W, Miao X-G, Kong X-Y. A novel model of double replications and random loss accounts for rearrangements in the Mitogenome of Samariscus latus (Teleostei: Pleuronectiformes). BMC Genomics. 2014; 15(1):352. BioMed Central Full Text
  • [22]Lunt DH, Hyman BC. Animal mitochondrial DNA recombination. Nature. 1997; 387(6630):247.
  • [23]Arndt A, Smith MJ. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Mol Biol Evol. 1998; 15(8):1009-1016.
  • [24]Moritz C, Dowling TE, Brown WM. Evolution of Animal Mitochondrial-DNA - Relevance for Population Biology and Systematics. Annu Rev Ecol Syst. 1987; 18:269-292.
  • [25]Lavrov DV, Boore JL, Brown WM. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol. 2002; 19(2):163-169.
  • [26]Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature. 1987; 329(6142):853-855.
  • [27]Jacobs HT, Herbert ER, Rankine J. Sea urchin egg mitochondrial DNA contains a short displacement loop (D-loop) in the replication origin region. Nucleic Acids Res. 1989; 17(22):8949-8965.
  • [28]Beckenbach AT. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly. Genome Biol Evol. 2012; 4(2):89-101.
  • [29]San Mauro D, Gower DJ, Zardoya R, Wilkinson M. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol. 2006; 23(1):227-234.
  • [30]Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. 1999; 41:95-98.
  • [31]Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25(5):955-964.
  • [32]Guo XH, Liu SJ, Liu Y. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture. 2003; 224(1–4):25-38.
  • [33]Shi W, Kong XY, Wang ZM, Jiang JX. Utility of tRNA genes from the complete mitochondrial genome of Psetta maxima for implying a possible sister-group relationship to the Pleuronectiformes. Zool Stud. 2011; 50(5):665-681.
  • [34]Miya M, Pietsch TW, Orr JW, Arnold RJ, Satoh TP, Shedlock AM et al.. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol Biol. 2010; 10:58. BioMed Central Full Text
  • [35]Yagishita N, Miya M, Yamanoue Y, Shirai SM, Nakayama K, Suzuki N et al.. Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the percifom fishes (Teleostei: Percomorpha). Mol Phylogenet Evol. 2009; 53(1):258-266.
  • [36]Wang Z-M, Shi W, Jiang J-X, Wang S-Y, Miao X-G, Huang L-M et al.. The complete mitochondrial genome of a striped sole Zebrias zebrinus (Pleuronectiformes: Soleidae). Mitochondrial DNA. 2013; 24(6):633-635.
  • [37]Fujita MK, Boore JL, Moritz C. Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronotia binoei; Squamata, Gekkonidae). Mol Biol Evol. 2007; 24(12):2775-2786.
  • [38]Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990; 212(4):599-634.
  • [39]Seligmann H, Krishnan NM, Rao BJ. Possible multiple origins of replication in primate mitochondria: Alternative role of tRNA sequences. J Theor Biol. 2006; 241(2):321-332.
  • [40]Seligmann H, Krishnan NM. Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards. J Exp Zool B Mol Dev Evol. 2006; 306(5):433-449.
  • [41]Seligmann H, Labra A. The relation between hairpin formation by mitochondrial WANCY tRNAs and the occurrence of the light strand replication origin in Lepidosauria. Gene. 2014; 542(2):248-257.
  • [42]Seligmann H. Hybridization between mitochondrial heavy strand tDNA and expressed light strand tRNA modulates the function of heavy strand tDNA as light strand replication origin. J Mol Biol. 2008; 379(1):188-199.
  • [43]Clayton DA, Brown TA. Replication of mammalian mitochondrial DNA occurs by strand displacement with alternative light-strand origins. FASEB J. 2006; 20(4):A453-3.
  • [44]Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M, Jacobs HT et al.. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006; 25(22):5358-5371.
  文献评价指标  
  下载次数:21次 浏览次数:31次