期刊论文详细信息
BMC Genomics
Uncovering molecular events associated with the chemosuppressive effects of flaxseed: a microarray analysis of the laying hen model of ovarian cancer
Dale B Hales1  Nawneet K Kurrey3  Sheree C Speckman1  Karen H Hales2 
[1] Department of Physiology, Southern Illinois University at Carbondale, School of Medicine, Life Science III, (M/C 6512), 1135 Dr., Carbondale, Lincoln, IL 62901, USA;Department of Obstetrics and Gynecology, Southern Illinois University at Carbondale, School of Medicine, Life Science III, (M/C 6512), 1135 Dr., Carbondale, Lincoln, IL 62901, USA;Current address CSIR Central Food Technological Research Institute, Mysore, KA 570020, India
关键词: Branching morphogenesis;    Flaxseed;    Laying hen;    Ovarian cancer;   
Others  :  1141330
DOI  :  10.1186/1471-2164-15-709
 received in 2013-11-27, accepted in 2014-06-05,  发布年份 2014
PDF
【 摘 要 】

Background

The laying hen model of spontaneous epithelial ovarian cancer (EOC) is unique in that it is the only model that enables observations of early events in disease progression and is therefore also uniquely suited for chemoprevention trials. Previous studies on the effect of dietary flaxseed in laying hens have revealed the potential for both amelioration and prevention of ovarian cancer. The objective of this study was to assess the effect of flaxseed on genes and pathways that are dysregulated in tumors. We have used a bioinformatics approach to identify these genes, followed by qPCR validation, immunohistochemical localization, and in situ hybridization to visualize expression in normal ovaries and tumors from animals fed a control diet or a diet containing 10% flaxseed.

Results

Bioinformatic analysis of ovarian tumors in hens led to the identification of a group of highly up-regulated genes that are involved in the embryonic process of branching morphogenesis. Expression of these genes coincides with expression of E-cadherin in the tumor epithelium. Levels of expression of these genes in tumors from flax-fed animals are reduced 40-60%. E-cadherin and miR200 are both up-regulated in tumors from control-fed hens, whereas their expression is decreased 60-75% in tumors from flax-fed hens. This does not appear to be due to an increase in ZEB1 as mRNA levels are increased five-fold in tumors, with no significant difference between control-fed and flax-fed hens.

Conclusions

We suggest that nutritional intervention with flaxseed targets the pathways regulating branching morphogenesis and thereby alters the progression of ovarian cancer.

【 授权许可】

   
2014 Hales et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327023247688.pdf 3325KB PDF download
Figure 8. 114KB Image download
Figure 7. 184KB Image download
Figure 6. 128KB Image download
Figure 5. 104KB Image download
Figure 4. 84KB Image download
Figure 3. 96KB Image download
Figure 2. 109KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, Friedlander M, Gabra H, Kaye SB, Lord CJ, Lengyel E, Levine DA, McNeish IA, Menon U, Mills GB, Nephew KP, Oza AM, Sood AK, Stronach EA, Walczak H, Bowtell DD, Balkwill FR: Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer 2011, 11(10):719-725.
  • [2]Wiseman M: The second world cancer research fund/American institute for cancer research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008, 67(03):253-256.
  • [3]Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420(6917):860-867.
  • [4]Wang L-Q: Mammalian phytoestrogens: enterodiol and enterolactone. J Chromatogr B 2002, 777(1–2):289-309.
  • [5]Johnson PA, Giles JR: The hen as a model of ovarian cancer. Nat Rev Cancer 2013, 13(6):432-436.
  • [6]Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P, Nephew KP, Hales DB, Stack MS: Epithelial ovarian cancer experimental models. Oncogene 2013. August 12 [Epub ahead of print]
  • [7]Fredrickson TN: Ovarian tumors of the hen. Environ Health Perspect 1987, 73:35-51.
  • [8]Barua A, Bitterman P, Abramowicz JS, Dirks AL, Bahr JM, Hales DB, Bradaric MJ, Edassery SL, Rotmensch J, Luborsky JL: Histopathology of ovarian tumors in laying hens: a preclinical model of human ovarian cancer. Int J Gynecol Cancer 2009, 19(4):531-539.
  • [9]Hakim AA, Barry CP, Barnes HJ, Anderson KE, Petitte J, Whitaker R, Lancaster JM, Wenham RM, Carver DK, Turbov J, Berchuck A, Kopelovich L, Rodriguez GC: Ovarian adenocarcinomas in the laying hen and women share similar alterations in p53, ras, and HER-2/neu. Cancer Prev Res (Phila) 2009, 2(2):114-121.
  • [10]Jackson E, Anderson K, Ashwell C, Petitte J, Mozdziak PE: CA125 expression in spontaneous ovarian adenocarcinomas from laying hens. Gynecol Oncol 2007, 104(1):192-198.
  • [11]Zhuge Y, Lagman JA, Ansenberger K, Mahon CJ, Daikoku T, Dey SK, Bahr JM, Hales DB: CYP1B1 expression in ovarian cancer in the laying hen Gallusdomesticus. Gynecol Oncol 2009, 112(1):171-178.
  • [12]Ansenberger K, Zhuge Y, Lagman JA, Richards C, Barua A, Bahr JM, Hales DB: E-cadherin expression in ovarian cancer in the laying hen, Gallus domesticus, compared to human ovarian cancer. Gynecol Oncol 2009, 113(3):362-369.
  • [13]Hales DB, Zhuge Y, Lagman JA, Ansenberger K, Mahon C, Barua A, Luborsky JL, Bahr JM: Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus). Endocrine 2008, 33(3):235-244.
  • [14]Ansenberger K, Richards C, Zhuge Y, Barua A, Bahr JM, Luborsky JL, Hales DB: Decreased severity of ovarian cancer and increased survival in hens fed a flaxseed-enriched diet for 1 year. Gynecol Oncol 2010, 117(2):341-347.
  • [15]Eilati E, Bahr JM, Hales DB: Long term consumption of flaxseed enriched diet decreased ovarian cancer incidence and prostaglandin E2 in hens. Gynecol Oncol 2013, 130(3):620-628.
  • [16]Li X, Chiang HI, Zhu J, Dowd SE, Zhou H: Characterization of a newly developed chicken 44 K Agilent microarray. BMC Genomics 2008, 9:60. BioMed Central Full Text
  • [17]Landen CN Jr, Birrer MJ, Sood AK: Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008, 26(6):995-1005.
  • [18]Zhang J, Chen YH, Lu Q: Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol 2010, 6(4):587-603.
  • [19]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
  • [20]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4):663-676.
  • [21]Hudson LG, Zeineldin R, Stack MS: Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 2008, 25(6):643-655.
  • [22]Ansenberger K: The Laying hen and Flaxseed: A Model for Dietary Intervention of Human Ovarian Cancer. Ph.D. Chicago: University of Illinois at Chicago, Health Sciences Center; 2010.
  • [23]Torres M, Gomez-Pardo E, Dressler GR, Gruss P: Pax-2 controls multiple steps of urogenital development. Development 1995, 121(12):4057-4065.
  • [24]Bazer FW: Uterine adenogenesis and pregnancy: multiple roles for Foxa2 in mice. Biol Reprod 2010, 83(3):319-321.
  • [25]Satoh K, Ginsburg E, Vonderhaar BK: Msx-1 and Msx-2 in mammary gland development. J Mammary Gland Biol Neoplasia 2004, 9(2):195-205.
  • [26]Logan C, Hornbruch A, Campbell I, Lumsden A: The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 1997, 124(12):2317-2324.
  • [27]Tung CS, Mok SC, Tsang YT, Zu Z, Song H, Liu J, Deavers MT, Malpica A, Wolf JK, Lu KH, Gershenson DM, Wong KK: PAX2 expression in low malignant potential ovarian tumors and low-grade ovarian serous carcinomas. Mod Pathol 2009, 22(9):1243-1250.
  • [28]Trevino LS, Giles JR, Wang W, Urick ME, Johnson PA: Gene expression profiling reveals differentially expressed genes in ovarian cancer of the hen: support for oviductal origin? Horm Cancer 2010, 1(4):177-186.
  • [29]Zhai Y, Iura A, Yeasmin S, Wiese AB, Wu R, Feng Y, Fearon ER, Cho KR: MSX2 is an oncogenic downstream target of activated WNT signaling in ovarian endometrioid adenocarcinoma. Oncogene 2011, 30(40):4152-4162.
  • [30]Bendall AJ, Abate-Shen C: Roles for Msx and Dlx homeoproteins in vertebrate development. Gene 2000, 247(1–2):17-31.
  • [31]Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang S-L, Wert S, Stahlman MT, Whitsett JA: Compensatory Roles of Foxa1 and Foxa2 during Lung Morphogenesis. J Biol Chem 2005, 280(14):13809-13816.
  • [32]Berger RR, Sanders MM: Estrogen modulates HNF-3beta mRNA levels in the developing chick oviduct. DNA Cell Biol 2000, 19(2):103-112.
  • [33]Burtscher I, Lickert H: Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development 2009, 136(6):1029-1038.
  • [34]Liu Y-N, Lee W-W, Wang C-Y, Chao T-H, Chen Y, Chen JH: Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene 2005, 24(56):8277-8290.
  • [35]Song Y, Washington MK, Crawford HC: Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 2010, 70(5):2115-2125.
  • [36]Hidalgo A: Growth and patterning from the engrailed interface. Int J Dev Biol 1998, 42(3):317-324.
  • [37]McGrath SE, Michael A, Pandha H, Morgan R: Engrailed homeobox transcription factors as potential markers and targets in cancer. FEBS Lett 2013, 587(6):549-554.
  • [38]Morgan R, Boxall A, Bhatt A, Bailey M, Hindley R, Langley S, Whitaker HC, Neal DE, Ismail M, Whitaker H, Annels N, Michael A, Pandha H: Engrailed-2 (EN2): a tumor specific urinary biomarker for the early diagnosis of prostate cancer. Clin Cancer Res 2011, 17(5):1090-1098.
  • [39]van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA: MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol 2010, 42(8):1282-1290.
  • [40]Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel J-P, Cottu P, Sastre-Garau X, Mechta-Grigoriou F: miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 2011, 17(12):1627-1635.
  • [41]Prasad K: Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, Enterodiol, and enterolactone. Int J Angiol 2000, 9(4):220-225.
  • [42]Kivelä AM, Kansanen E, Jyrkkänen H-K, Nurmi T, Ylä-Herttuala S, Levonen A-L: Enterolactone induces heme oxygenase-1 expression through nuclear factor-E2-related factor 2 activation in endothelial cells. J Nutr 2008, 138(7):1263-1268.
  • [43]Parasramka MA, Ho E, Williams DE, Dashwood RH: MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 2012, 51(3):213-230.
  • [44]Cano A, Nieto MA: Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 2008, 18(8):357-359.
  • [45]Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008, 9(6):582-589.
  • [46]Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008, 10(5):593-601.
  • [47]Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008, 22(7):894-907.
  • [48]Auersperg N: The stem-cell profile of ovarian surface epithelium is reproduced in the oviductal fimbriae, with increased stem-cell marker density in distal parts of the fimbriae. Int J Gynecol Pathol 2013, 32(5):444-453.
  • [49]Paik DY, Janzen DM, Schafenacker AM, Velasco VS, Shung MS, Cheng D, Huang J, Witte ON, Memarzadeh S: Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells 2012, 30(11):2487-2497.
  • [50]Eilati E, Pan L, Bahr JM, Hales DB: Age dependent increase in prostaglandin pathway coincides with onset of ovarian cancer in laying hens. Prostaglandins Leukot Essent Fatty Acids 2012, 87(6):177-184.
  • [51]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [52]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [53]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374-378.
  • [54]Mi H, Thomas P: PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 2009, 563:123-140.
  • [55]Mi H, Muruganujan A, Casagrande JT, Thomas PD: Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 2013, 8(8):1551-1566.
  • [56]Zheng Q, Wang XJ: GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008, 36(Web Server issue):W358-W363.
  • [57]Bany B, Simmons D: Non-Radioactive in Situ Hybridizaion: Optimization for Tissue Sections from Pregnant Uteri and Placenta During the First Half of Pregnancy. In The Guide for Investigation of Mouse Pregnancy. Edited by Croy B, Yamada A, DeMayo F, Adamson S. Amsterdam: Elsevier; 2013:591-603.
  文献评价指标  
  下载次数:71次 浏览次数:34次