期刊论文详细信息
BMC Systems Biology
Rapid construction of metabolic models for a family of Cyanobacteria using a multiple source annotation workflow
Costas D Maranas1  Himadri B Pakrasi2  Bertram M Berla3  Thomas J Mueller1 
[1] Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA;Department of Biology, Washington University, St. Louis, Missouri, USA;Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri, USA
关键词: Cyanothece;    Cyanobacteria;    Genome-scale metabolic model;    Metabolic modeling;    Semi-automated metabolic network reconstruction;   
Others  :  1141558
DOI  :  10.1186/1752-0509-7-142
 received in 2013-09-25, accepted in 2013-12-19,  发布年份 2013
PDF
【 摘 要 】

Background

Cyanobacteria are photoautotrophic prokaryotes that exhibit robust growth under diverse environmental conditions with minimal nutritional requirements. They can use solar energy to convert CO2 and other reduced carbon sources into biofuels and chemical products. The genus Cyanothece includes unicellular nitrogen-fixing cyanobacteria that have been shown to offer high levels of hydrogen production and nitrogen fixation. The reconstruction of quality genome-scale metabolic models for organisms with limited annotation resources remains a challenging task.

Results

Here we reconstruct and subsequently analyze and compare the metabolism of five Cyanothece strains, namely Cyanothece sp. PCC 7424, 7425, 7822, 8801 and 8802, as the genome-scale metabolic reconstructions iCyc792, iCyn731, iCyj826, iCyp752, and iCyh755 respectively. We compare these phylogenetically related Cyanothece strains to assess their bio-production potential. A systematic workflow is introduced for integrating and prioritizing annotation information from the Universal Protein Resource (Uniprot), NCBI Protein Clusters, and the Rapid Annotations using Subsystems Technology (RAST) method. The genome-scale metabolic models include fully traced photosynthesis reactions and respiratory chains, as well as balanced reactions and GPR associations. Metabolic differences between the organisms are highlighted such as the non-fermentative pathway for alcohol production found in only Cyanothece 7424, 8801, and 8802.

Conclusions

Our development workflow provides a path for constructing models using information from curated models of related organisms and reviewed gene annotations. This effort lays the foundation for the expedient construction of curated metabolic models for organisms that, while not being the target of comprehensive research, have a sequenced genome and are related to an organism with a curated metabolic model. Organism-specific models, such as the five presented in this paper, can be used to identify optimal genetic manipulations for targeted metabolite overproduction as well as to investigate the biology of diverse organisms.

【 授权许可】

   
2013 Mueller et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327080322205.pdf 874KB PDF download
Figure 4. 84KB Image download
Figure 3. 88KB Image download
Figure 2. 50KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Thiele I, Palsson BO: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010, 5:93-121.
  • [2]Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2:886-897.
  • [3]Feist AM, Herrgård MJ, Thiele I, Reed JL, BO P: Reconstruction of Biochemical Networks in Microbial Organisms. Nat Rev Microbiol 2009, 7:129-143.
  • [4]Reed JL, Famili I, Thiele I, Palsson BO: Towards multidimensional genome annotation. Nat Rev Genet 2006, 7:130-141.
  • [5]Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD: Mathematical optimization applications in metabolic networks. Metab Eng 2012, 14:672-686.
  • [6]Carneiro S, Rocha I, Ferreira E: Application of a genome-scale metabolic model to the inference of nutritional requirements and metabolic bottlenecks during recombinant protein production in Escherichia coli. Microb Cell Factories 2006, 5:P52. BioMed Central Full Text
  • [7]Ranganathan S, Maranas CD: Microbial 1-butanol production: Identification of non-native production routes and in silico engineering interventions. Biotechnol J 2010, 5:716-725.
  • [8]Ranganathan S, Suthers P, Maranas CD: OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 2010, 6:e1000744.
  • [9]Suthers PF, Zomorrodi A, Maranas CD: Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 2009, 5:301.
  • [10]Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD: Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PloS one 2012, 7:e48285.
  • [11]Vu T, Stolyar S, Pinchuk G, Hill E, Kucek LA, Brown R, Lipton M, Osterman A, Fredrickson J, Konopka A, et al.: Genomescale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput Biol 2012, 8:e1002460.
  • [12]Bandyopadhyay A, Elvitigala T, Welsh E, Stöckel J, Liberton M, Min H, Sherman LA, Pakrasi HB: Novel metabolic attributes of the Genus Cyanothece, comprising a group of unicellular nitrogen-fixing cyanobacteria. mBio 2011, 2:e00214.
  • [13]Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC: Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. CurrOpin Biotechnol 2008, 19:235-240.
  • [14]Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P: Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev: MMBR 2002, 66:1-20. table of contents
  • [15]Min H, Sherman LA: Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 2010, 76:4293-4301.
  • [16]Melnicki MR, Pinchuk GE, Hill EA, Kucek LA, Fredrickson JK, Konopka A, Beliaev AS: Sustained H(2) production driven by photosynthetic water splitting in a unicellular cyanobacterium. mBio 2012, 3:e00197-00112.
  • [17]Welsh EA, Liberton M, Stockel J, Loh T, Elvitigala T, Wang C, Wollam A, Fulton RS, Clifton SW, Jacobs JM, et al.: The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci USA 2008, 105:15094-15099.
  • [18]Stockel J, Jacobs JM, Elvitigala TR, Liberton M, Welsh EA, Polpitiya AD, Gritsenko MA, Nicora CD, Koppenaal DW, Smith RD, Pakrasi HB: Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142. PloS one 2011, 6:e16680.
  • [19]Hall D, Markov S, Watanabe Y, Rao K: The potential applications of cyanobacterial photosynthesis for clean technologies. Photosynth Res 1995, 46:159-167.
  • [20]Porta D, Rippka R, Hernandez-Marine M: Unusual ultrastructural features in three strains of Cyanothece (cyanobacteria). Arch Microbiol 2000, 173:154-163.
  • [21]Wu B, Zhang B, Feng X, Rubens JR, Huang R, Hicks LM, Pakrasi HB, Tang YJ: Alternative isoleucine synthesis pathway in cyanobacterial species. Microbiology 2010, 156:596-602.
  • [22]Min H, Sherman LA: Genetic transformation and mutagenesis via single-stranded DNA in the unicellular, diazotrophic cyanobacteria of the genus Cyanothece. Appl Environ Microbiol 2010, 76:7641-7645.
  • [23]Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB: Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol 2012, 161:1334-1346.
  • [24]The Uniprot Consortium: Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012, 40:D71-D75.
  • [25]Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, Driscoll T, Hix D, Mane SP, Mao C, et al.: PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 2011, 79:4286-4298.
  • [26]Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [27]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 2012, 40:D109-D114.
  • [28]Feist AM, Henry C, Reed JL, Krummenacker M, Joyce A, Karp P, Broadbelt L, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  • [29]Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R: Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 2012, 11:27. BioMed Central Full Text
  • [30]Dal'Molin CG, Quek LE, Palfreyman RW, Nielsen LK: AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC genomics 2011, 12(4):S5.
  • [31]Licona-Cassani C, Marcellin E, Quek L, Jacob S, Nielsen L: Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production. Antonie Van Leeuwenhoek 2012, 102:493-502.
  • [32]Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Fedorov B, Kiryutin B, O’Neill K, Resch W, Resenchuk S: The National Center for Biotechnology Information's Protein Clusters Database. Nucleic Acids Res 2009, 37:D216-D223.
  • [33]Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, et al.: The RAST Server: rapid annotations using subsystems technology. BMC genomics 2008, 9:75. BioMed Central Full Text
  • [34]Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, et al.: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33:5691-5702.
  • [35]Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010, 28:977-982.
  • [36]Collins MD, Jones D: Distribution of Isoprenoid Quinone Structural Types in Bacteria and Their Taxonomic Implications. Microbiol Rev 1981, 45:316-354.
  • [37]Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R: Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 2013, 9:e1003081.
  • [38]Knoop H, Zilliges Y, Lockau W, Steuer R: The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 2010, 154:410-422.
  • [39]Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, Nakamura Y: CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res 2010, 38:D379-D381.
  • [40]Nakamura Y, Kaneko T, Miyajima N, Tabata S: Extension of CyanoBase. CyanoMutants: repository of mutant information on Synechocystis sp. strain PCC6803. Nucleic Acids Res 1999, 27:66-68.
  • [41]Zhang SY, Bryant DA: The Tricarboxylic Acid Cycle in Cyanobacteria. Science 2011, 334:1551-1553.
  • [42]Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB: Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
  • [43]Steinbuchel A, Valentin HE: Diversity of Bacterial Polyhydroxyalkanoic Acids. FEMS Microbiol Lett 1995, 128:219-228.
  • [44]Philip S, Keshavarz T, Roy I: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 2007, 82:233-247.
  • [45]Rehm BH, Steinbuchel A: Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 1999, 25:3-19.
  • [46]Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-U13.
  • [47]Clomburg JM, Gonzalez R: Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 2010, 86:419-434.
  • [48]de la Plaza M, de Palencia Fernandez P, Pelaez C, Requena T: Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 2004, 238:367-374.
  • [49]Russell DW, Smith M, Williamson VM, Young ET: Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J Biol Chem 1983, 258:2674-2682.
  • [50]Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ: Characterization of an alcohol dehydrogenase from the Cyanobacterium Synechocystis sp strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system. J Bacteriol 2009, 191:4383-4391.
  • [51]Papoutsakis ET: Engineering solventogenic clostridia. Curr Opin Biotechnol 2008, 19:420-429.
  • [52]Ezeji TC, Qureshi N, Blaschek HP: Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 2007, 18:220-227.
  • [53]Sillers R, Chow A, Tracy B, Papoutsakis ET: Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 2008, 10:321-332.
  • [54]Yu M, Zhang Y, Tang IC, Yang ST: Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 2011, 13:373-382.
  • [55]Thony B, Auerbach G, Blau N: Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 2000, 347(Pt 1):1-16.
  • [56]Choi YK, Hwang YK, Park YS: Molecular cloning and disruption of a novel gene encoding UDP-glucose: tetrahydrobiopterin alpha-glucosyltransferase in the cyanobacterium Synechococcus sp. PCC 7942. FEBS Lett 2001, 502:73-78.
  • [57]Chung HJ, Kim YA, Kim YJ, Choi YK, Hwang YK, Park YS: Purification and characterization of UDP-glucose:tetrahydrobiopterin glucosyltransferase from Synechococcus sp. PCC 7942. Biochim Biophys Acta 2000, 1524:183-188.
  • [58]Sun J, Sayyar B, Butler JE, Pharkya P, Fahland TR, Famili I, Schilling CH, Lovley DR, Mahadevan R: Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Syst Biol 2009, 3:15. BioMed Central Full Text
  • [59]Pinchuk GE, Hill EA, Geydebrekht OV, De Ingeniis J, Zhang X, Osterman A, Scott JH, Reed SB, Romine MF, Konopka AE, et al.: Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol 2010, 6:e1000822.
  • [60]Sun J, Haveman SA, Bui O, Fahland TR, Lovley DR: Constraint-based modeling analysis of the metabolism of two Pelobacter species. BMC Syst Biol 2010, 4:174. BioMed Central Full Text
  • [61]Hamilton JJ, Reed JL: Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PloS one 2012, 7:e34670.
  • [62]Reyes R, Gamermann D, Montagud A, Fuente D, Triana J, Urchueguia JF, de Cordoba PF: Automation on the generation of genome-scale metabolic models. J Comput Biol 2012, 19:1295-1306.
  • [63]Liao YC, Chen JC, Tsai MH, Tang YH, Chen FC, Hsiung CA: MrBac: a web server for draft metabolic network reconstructions for bacteria. Bioeng Bugs 2011, 2:284-287.
  • [64]Vitkin E, Shlomi T: MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 2012, 13:R111. BioMed Central Full Text
  • [65]Agren R, Liu LM, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J: The RAVEN toolbox and its use for generating a genome-scale metabolic model for penicillium chrysogenum. PLoS Comput Biol 2013, 9:e1002980.
  • [66]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
  • [67]Meyer F, Overbeek R, Rodriguez A: FIGfams: yet another set of protein families. Nucleic Acids Res 2009, 37:6643-6654.
  • [68]Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012, 40:D130-D135.
  • [69]Satish Kumar V, Dasika MS, Maranas CD: Optimization based automated curation of metabolic reconstructions. BMC Bioinforma 2007, 8:212. BioMed Central Full Text
  • [70]Notebaart RA, van Enckevort FH, Francke C, Siezen RJ, Teusink B: Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinforma 2006, 7:296. BioMed Central Full Text
  • [71]Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotechnol 2010, 28:245-248.
  文献评价指标  
  下载次数:17次 浏览次数:17次