| BMC Microbiology | |
| Gene expression changes in Porphyromonas gingivalis W83 after inoculation in rat oral cavity | |
| Ya-Ping Pan1  Li-Si Tan1  Hong-Yan Wang1  Jun-Chao Liu1  Chun-Ling Pan1  Qian Li1  Jian Zhao1  | |
| [1] Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China | |
| 关键词: Gene expression; Microarray; Periodontitis; Porphyromonas gingivalis; | |
| Others : 1212032 DOI : 10.1186/s12866-015-0438-0 |
|
| received in 2015-01-02, accepted in 2015-05-05, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
The development of chronic periodontitis was due to not only periodontal pathogens, but also the interaction between periodontal pathogens and host. The aim of this study is to investigate the alterations in gene expression in Porphyromonas gingivalis (P.gingivalis) W83 after inoculation in rat oral cavity.
Results
P.gingivalis W83 inoculation in rat oral cavity caused inflammatory responses in gingival tissues and destroyed host alveolar bone. Microarray analysis revealed that 42 genes were upregulated, and 22 genes were downregulated in the detected 1786 genes in the inoculated P.gingivalis W83. Real-time quantitative PCR detection confirmed the expression alterations in some selected genes. Products of these upregulated and downregulated genes are mainly related to transposon functions, cell transmembrane transportation, protein and nucleic acid metabolism, energy metabolism, cell division and bacterial pathogenicity.
Conclusions
P.gingivalis W83 has a pathogenic effect on host oral cavity. Meanwhile, inflammatory oral environment alters P.gingivalis W83 gene expression profile. These changes in gene expression may limit the proliferation and weaken the pathogenicity of P.gingivalis W83, and favor themselves to adapt local environment for survival.
【 授权许可】
2015 Zhao et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150613020129643.pdf | 1065KB | ||
| Fig. 3. | 34KB | Image | |
| Fig. 2. | 93KB | Image | |
| Fig. 1. | 63KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Williams RC. Periodontal disease. N Engl J Med. 1990; 322(6):373-382.
- [2]Aruni AW, Zhang K, Dou Y, Fletcher H. Proteome analysis of coinfection of epithelial cells with Filifactor alocis and Porphyromonas gingivalis shows modulation of pathogen and host regulatory pathways. Infect Immun. 2014; 82(8):3261-3274.
- [3]Nissen L, Sgorbati B, Biavati B, Belibasakis GN. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression. Ann Microbiol. 2014; 64:611-617.
- [4]Kerr JE, Abramian JR, Dao DH, Rigney TW, Fritz J, Pham T et al.. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis. PLoS One. 2014; 9(3): Article ID e91696
- [5]Baker PJ. The role of immune responses in bone loss during periodontal disease. Microbes Infect. 2000; 2(10):1181-1192.
- [6]Anaya-Bergman C, Rosato A, Lewis JP. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis. Mol Oral Microbiol. 2015; 30(1):39-61.
- [7]Phillips P, Progulske-Fox A, Grieshaber S, Grieshaber N. Expression of Porphyromonas gingivalis small RNA in response to hemin availability identified using microarray and RNA-seq analysis. FEMS Microbiol Lett. 2014; 351(2):202-208.
- [8]Moon JH, Lee JH, Lee JY. Microarray analysis of the transcriptional responses of Porphyromonas gingivalis to polyphosphate. BMC Microbiol. 2014; 14:218. BioMed Central Full Text
- [9]Azelmat J, Larente JF, Grenier D. The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis. Arch Oral Biol. 2015; 60(2):342-346.
- [10]Yoshimura M, Ohara N, Kondo Y, Shoji M, Okano S, Nakano Y et al.. Proteome analysis of Porphyromonas gingivalis cells placed in a subcutaneous chamber of mice. Oral Microbiol Immunol. 2008; 23(5):413-418.
- [11]Baker PJ, Dixon M, Roopenian DC. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect Immun. 2000; 68(10):5864-5868.
- [12]Zhang Z, Saier MH. Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J Mol Microbiol Biotechnol. 2011; 21(1–2):59-70.
- [13]Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res. 2013; 21(6–7):587-600.
- [14]Arnault C, Dufournel I. Genome and stresses: reactions against aggressions, behavior of transposable elements. Genetica. 1994; 93(1–3):149-160.
- [15]Hendrickson EL, Xia Q, Wang T, Lamont RJ, Hackett M. Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database. BMC Microbiol. 2009; 9:185. BioMed Central Full Text
- [16]Xia Q, Wang T, Taub F, Park Y, Capestany CA, Lamont RJ et al.. Quantitative proteomics of intracellular Porphyromonas gingivalis. Proteomics. 2007; 7(23):4323-4237.
- [17]Park Y, Yilmaz O, Jung IY, Lamont RJ. Identification of Porphyromonas gingivalis genes specifically expressed in human gingival epithelial cells by using differential display reverse transcription-PCR. Infect Immun. 2004; 72(7):3752-3758.
- [18]Létoffé S, Delepelaire P, Wandersman C. Free and hemophore-bound heme acquisitions through the outer membrane receptor HasR have different requirements for the TonB-ExbB-ExbD complex. J Bacteriol. 2004; 186(13):4067-4074.
- [19]Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005; 151(Pt 3):653-663.
- [20]Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 2005; 1(6): Article ID e60
- [21]Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007; 8:172. BioMed Central Full Text
PDF