期刊论文详细信息
BMC Genetics
Evolutionary history of black grouse major histocompatibility complex class IIB genes revealed through single locus sequence-based genotyping
Jacob Höglund2  Yvonne Meyer-Lucht2  Biao Wang2  Tanja Strand1 
[1] Current address: Swedish Institute for Communicable Disease Control, Department of Analysis and Prevention, Nobels väg 18, Solna, SE-171 82, Sweden;Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
关键词: Tetrao tetrix;    3′UTR;    Galliformes;    BLB2;    BLB1;    Early duplication;    Concerted evolution;    Balancing selection;   
Others  :  1087213
DOI  :  10.1186/1471-2156-14-29
 received in 2012-10-24, accepted in 2013-04-12,  发布年份 2013
PDF
【 摘 要 】

Background

Gene duplications are frequently observed in the Major Histocompatibility Complex (MHC) of many species, and as a consequence loci belonging to the same MHC class are often too similar to tell apart. In birds, single locus genotyping of MHC genes has proven difficult due to concerted evolution homogenizing sequences at different loci. But studies on evolutionary history, mode of selection and heterozygosity correlations on the MHC cannot be performed before it is possible to analyse duplicated genes separately. In this study we investigate the architecture and evolution of the MHC class IIB genes in black grouse. We developed a sequence-based genotyping method for separate amplification of the two black grouse MHC class IIB genes BLB1 and BLB2. Based on this approach we are able to study differences in structure and selection between the two genes in black grouse and relate these results to the chicken MHC structure and organization.

Results

Sequences were obtained from 12 individuals and separated into alleles using the software PHASE. We compared nucleotide diversity measures and employed selection tests for BLB1 and BLB2 to explore their modes of selection. Both BLB1 and BLB2 are transcribed and display classic characteristics of balancing selection as predicted for expressed MHC class IIB genes. We found evidence for both intra- and interlocus recombination or gene conversion, as well as indication for positive but differential selection at both loci. Moreover, the two loci appear to be linked. Phylogenetic analyses revealed orthology of the black grouse MHC class IIB genes to the respective BLB loci in chicken.

Conclusions

The results indicate that the duplication of the BLB gene occurred before the species divergence into black grouse, chicken and pheasant. Further, we conclude that BLB1 and BLB2 in black grouse are subjected to homogenizing concerted evolution due to interlocus genetic exchange after species divergence. The loci are in linkage disequilibrium, which is in line with the theory of tightly coevolving genes within the MHC under the minimal essential MHC hypothesis. Our results support the conclusion that MHC form and function in birds derived from studies on the domesticated chicken are not artefacts of the domestication process.

【 授权许可】

   
2013 Strand et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023834919.pdf 828KB PDF download
Figure 5. 63KB Image download
Figure 4. 39KB Image download
Figure 3. 48KB Image download
Figure 2. 52KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-1155.
  • [2]Klein J: Natural history of the major histocompatibility complex. New York: John Wiley and sons; 1986.
  • [3]Spurgin LG, Richardson DS: How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B-Biolo Scie 2010, 277(1684):979-988.
  • [4]Piertney S, Oliver M: The evolutionary ecology of the major histocompatibility complex. Heredity 2006, 96(1):7-21.
  • [5]Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SGE: The IMGT/HLA database. Nucleic Acids Res 2011, 39(suppl 1):D1171-D1176.
  • [6]Apanius V, Penn D, Slev PR, Ruff LR, Potts WK: The nature of selection on the major histocompatibility complex. Crit Rev Immunol 1997, 17(2):179-224.
  • [7]Bernatchez L, Landry C: MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evolution Biol 2003, 16(3):363-377.
  • [8]Hughes AL, Yeager M: Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 1998, 32:415-435.
  • [9]Martinsohn JT, Sousa AB, Guethlein LA, Howard JC: The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 1999, 50(3):168-200.
  • [10]Klein J: Origin of major histocompatibility complex polymorphism: the transspecies hypothesis. Hum Immunol 1987, 19:155-162.
  • [11]van Oosterhout C: A new theory of MHC evolution: beyond selection on the immune genes. Proc R Soc B-Biol Scie 2009, 276(1657):657-665.
  • [12]Edwards SV, Gasper J, March M: Genomics and polymorphism of Agph-DAB1, an MHC class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 1998, 15(3):236-250.
  • [13]Ekblom R, Grahn M, Höglund J: Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 2003, 54(10):734-741.
  • [14]Miller HC, Allendorf F, Daugherty CH: Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.). Mol Ecol 2010, 19(18):3894-3908.
  • [15]Strand T, Westerdahl H, Höglund J, Alatalo RV, Siitari H: The MHC class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 2007, 59(9):725-734.
  • [16]Westerdahl H, Wittzell H, von Schantz T: Polymorphism and transcription of Mhc class I genes in a passerine bird, the great reed warbler. Immunogenetics 1999, 49(3):158-170.
  • [17]Miller HC, Lambert DM: Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 2004, 13(12):3709-3721.
  • [18]Hughes CR, Miles S, Walbroehl JM: Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class IIB gene. Immunogenetics 2008, 60(5):219-231.
  • [19]Tsuda TT, Tsuda M, Naruse T, Kawata H, Ando A, Shiina T, Fukuda M, Kurita M, LeMaho I, Kulski JK: Phylogenetic analysis of penguin (Spheniscidae) species based on sequence variation in MHC class II genes. Immunogenetics 2001, 53(8):712-716.
  • [20]Alcaide M, Edwards S, Negro J: Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol 2007, 65:541-554.
  • [21]O’Neill A, Livant E, Ewald S: The chicken < i > BF1 (classical MHC class I) gene shows evidence of selection for diversity in expression and in promoter and signal peptide regions. Immunogenetics 2009, 61(4):289-302.
  • [22]Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS: Single locus typing of MHC class I and class IIB loci in a population of red jungle fowl. Immunogenetics 2008, 60(5):233-247.
  • [23]Reed K, Bauer M, Monson M, Benoit B, Chaves L, O’Hare T, Delany M: Defining the Turkey MHC: identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 2011, 63:753-771.
  • [24]Burri R, Niculita-Hirzel H, Roulin A, Fumagalli L: Isolation and characterization of major histocompatibility complex (MHC) class II B genes in the Barn owl (Aves: Tyto alba). Immunogenetics 2008, 60(9):543-550.
  • [25]Kelley J, Walter L, Trowsdale J: Comparative genomics of major histocompatibility complexes. Immunogenetics 2005, 56(10):683-695.
  • [26]Hess CM, Edwards SV: The Evolution of the Major Histocompatibility Complex in Birds. Bioscience 2002, 52(5):423-431.
  • [27]Kulski J, Shiina T, Anzai T, Kohara S, Inoko H: Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 2002, 190(1):95-122.
  • [28]Nei M, Gu X, Sitnikova T: Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Colloquium on Genetics and the Origin of Species: Jan 30-Feb 01 1997; Irvine, Ca: Natl Acad Sciences 1997, 94:7799-7806.
  • [29]Nei M, Rooney A: Concerted and birth-and-death evolution of multigene families. Ann Rev Gen 2005, 39:121-152.
  • [30]Kaufman J: The avian MHC. In Avian Immunology. Edited by Davison F, Kaspers B, Schat KA. Oxford: Academic; 2008.
  • [31]Walker BA, Hunt LG, Sowa AK, Skjødt K, Göbel TW, Lehner PJ, Kaufman J: The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci 2011, 108(20):8396-8401.
  • [32]Burri R, Hirzel H, Salamin N, Roulin A, Fumagalli L: Evolutionary patterns of MHC class IIB in owls and their implications for the understanding of avian MHC evolution. Mol Biol Evol 2008, 25(6):1180-1191.
  • [33]Fawcett J, Innan H: Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion. Genes 2011, 2(1):191-209.
  • [34]Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L: Adaptive divergence of ancient gene duplicates in the Avian MHC Class II β. Mol Biol Evol 2010, 27(10):2360-2374.
  • [35]Briles WE, McGibbon WH, Irwin MR: On multiple alleles effecting cellular antigens in the chicken. Genetics 1950, 35(6):633-652.
  • [36]Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S: The chicken B locus is a minimal essential major histocompatibility complex. Nature 1999, 401(6756):923-925.
  • [37]The MHC sequencing consortium: Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401(6756):921.
  • [38]Balakrishnan C, Ekblom R, Volker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt D, Graves T, Griffin D, Warren W: Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 2010, 8(1):29. BioMed Central Full Text
  • [39]Hosomichi K, Miller MM, Goto RM, Wang YJ, Suzuki S, Kulski JK, Nishibori M, Inoko H, Hanzawa K, Shiina T: Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity. J Immunol 2008, 181(5):3393-3399.
  • [40]Kaufman J: Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 1999, 50(3–4):228-236.
  • [41]Skjodt K, Koch C, Crone M, Simonsen M: Analysis of chickens for recombination within the MHC (B-complex). Tissue Antigens 1985, 25(5):278-282.
  • [42]Chaves LD, Faile GM, Krueth SB, Hendrickson JA, Reed KM: Haplotype variation, recombination, and gene conversion within the turkey MHC-B locus. Immunogenetics 2010, 62(7):465-477.
  • [43]Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H: Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 2004, 172(11):6751-6763.
  • [44]Jacob JP, Milne S, Beck S, Kaufman J: The major and a minor class II beta-chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics 2000, 51(2):138-147.
  • [45]Pharr GT, Dodgson JB, Hunt HD, Bacon LD: Class II MHC cDNAs in 15I(5) B-congenic chickens. Immunogenetics 1998, 47(5):350-354.
  • [46]Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J: Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 2007, 178(9):5744-5752.
  • [47]Wittzell H, Madsen T, Westerdahl H, Shine R, von Schantz T: MHC variation in birds and reptiles. Genetica 1999, 104(3):301-309.
  • [48]Wang B, Ekblom R, Strand T, Portela-Bens S, Hoglund J: Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genomics 2012, 13(1):553. BioMed Central Full Text
  • [49]Li XX, Han LX, Han JL: No Specific Primer Can Independently Amplify the Complete Exon 2 of Chicken BLB1 or BLB2 Genes. Int J Poultry Scie 2010, 9(2):192-197.
  • [50]Strand T, Höglund J: Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA). BMC Res Notes 2011, 4(1):183. BioMed Central Full Text
  • [51]Paxton RJ, Thoren PA, Tengo J, Estoup A, Pamilo P: Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol Ecol 1996, 5(4):511-519.
  • [52]Rozen S, Skaletsky H: Primer3 on the WWW for General Users and for Biologist Programmers Bioinformatics Methods and Protocols. Volume 132. Edited by Misener S, Krawetz SA. Humana Press; 2000::365-386.
  • [53]Lenz TL, Becker S: Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci - Implications for evolutionary analysis. Gene 2008, 427(1–2):117-123.
  • [54]Westerdahl H, Wittzell H, Schantz T, Bensch S: MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 2004, 92(6):534-542.
  • [55]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [56]Alcaide M, Rodriguez A, Negro J: Sampling strategies for accurate computational inferences of gametic phase across highly polymorphic major histocompatibility complex loci. BMC Res Notes 2011, 4(1):151. BioMed Central Full Text
  • [57]Bos D, Turner S, Dewoody J: Haplotype inference from diploid sequence data: evaluating performance using non-neutral MHC sequences. Hereditas 2007, 144:228-234.
  • [58]Mansai SP, Innan H: The power of the methods for detecting interlocus gene conversion. Genetics 2010, 184(2):517-527.
  • [59]Martin DP, Lemey P, Posada D: Analysing recombination in nucleotide sequences. Mol Ecol Resour 2011, 11(6):943-955.
  • [60]Hudson RR, Kaplan NL: Statistical properties of the number of recombination events in the history of a sample of DNA-sequences. Genetics 1985, 111(1):147-164.
  • [61]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26(19):2462-2463.
  • [62]Martin D, Rybicki E: RDP: detection of recombination amongst aligned sequences. Bioinformatics 2000, 16(6):562-563.
  • [63]Maynard Smith J: Analyzing the mosaic structure of genes. J Mol Evol 1992, 34(2):126-129.
  • [64]Posada D, Crandall KA: Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci USA 2001, 98(24):13757-13762.
  • [65]Padidam M, Sawyer S, Fauquet CM: Possible emergence of new geminiviruses by frequent recombination. Virology 1999, 265(2):218-225.
  • [66]Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006, 23(10):1891-1901.
  • [67]Delport W, Poon AFY, Frost SDW, Pond SLK: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26(19):2455-2457.
  • [68]McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P: The fine-scale structure of recombination rate variation in the human genome. Science 2004, 304(5670):581-584.
  • [69]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10(3):564-567.
  • [70]Hurst LD: Genetics and the understanding of selection. Nat Rev Genet 2009, 10(2):83-93.
  • [71]Garrigan D, Hedrick PW, Mitton J: Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 2003, 57(8):1707-1722.
  • [72]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  • [73]Tong J, Bramson J, Kanduc D, Chow S, Sinha A, Ranganathan S: Modeling the bound conformation of Pemphigus Vulgaris-associated peptides to MHC Class II DR and DQ Alleles. Immunome Res 2006, 2(1):1. BioMed Central Full Text
  • [74]Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [75]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [76]Posada D: jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [77]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23(2):254-267.
  • [78]Spurgin LG, van Oosterhout C, Illera JC, Bridgett S, Gharbi K, Emerson BC, Richardson DS: Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 2011, 20(24):5213-5225.
  • [79]Agudo R, Alcaide M, Rico C, Lemus JA, Blanco G, Hiraldo F, DonÁZar JA: Major histocompatibility complex variation in insular populations of the Egyptian vulture: inferences about the roles of genetic drift and selection. Mol Ecol 2011, 20(11):2329-2340.
  • [80]Bettencourt B, Feder M: Rapid Concerted Evolution via Gene Conversion at the Drosophila hso70 Genes. J Mol Evol 2002, 54:569-586.
  • [81]Sharon D, Gilad Y, Glusman G, Khen M, Lancet D, Kalush F: Identification and characterization of coding single-nucleotide polymorphisms within a human olfactory receptor gene cluster. Gene 2000, 260(1–2):87-94.
  • [82]Anisimova M, Nielsen R, Yang Z: Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 2003, 164(3):1229-1236.
  • [83]Ohta T: Gene conversion vs point mutation in generating variability at the antigen recognition site of Major Histocompatibility Complex loci. J Mol Evol 1995, 41(2):115-119.
  • [84]Helm-Bychowski KM, Wilson AC: Rates of nuclear DNA evolution in pheasant-like birds: evidence from restriction maps. Proc Natl Acad Sci 1986, 83(3):688-692.
  • [85]Pereira SL, Baker AJ: A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol Phylogenet Evol 2006, 38(2):499-509.
  • [86]Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution. Cell 2005, 123(6):1133-1146.
  文献评价指标  
  下载次数:0次 浏览次数:4次