期刊论文详细信息
BMC Medical Genomics
A genetic variant in the LDLR promoter is responsible for part of the LDL-cholesterol variability in primary hypercholesterolemia
Miguel Pocoví1  Fernando Civeira4  Jose C Rodríguez-Rey3  Emilio Ros5  Jose A Casasnovas1  Montserrat Cofán5  Montserrat León1  Marta Ledesma1  Soraya Rebollar2  Rocio Mateo-Gallego4  Javier Pérez-López3  Isabel De Castro-Orós4 
[1]Aragon Workers Health Study, Zaragoza, Spain
[2]Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, C. Pedro Cerbuna 12, 50009 Zaragoza, Spain
[3]Departamento de Biología Molecular. Facultad de Medicina, Universidad de Cantabria and Instituto de Formación e Investigación Marques de Valdecilla (IFIMAV), Santander, Spain
[4]Unidad de Lípidos y Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
[5]Servei d’Endocrinologia i Nutrició, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
关键词: LDLR;    Polygenic;    Gene regulation;    Variant;    Hypercholesterolemia;    LDL-cholesterol;   
Others  :  797068
DOI  :  10.1186/1755-8794-7-17
 received in 2013-12-17, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

GWAS have consistently revealed that LDLR locus variability influences LDL-cholesterol in general population. Severe LDLR mutations are responsible for familial hypercholesterolemia (FH). However, most primary hypercholesterolemias are polygenic diseases. Although Cis-regulatory regions might be the cause of LDL-cholesterol variability; an extensive analysis of the LDLR distal promoter has not yet been performed. We hypothesized that genetic variants in this region are responsible for the LDLR association with LDL-cholesterol found in GWAS.

Methods

Four-hundred seventy-seven unrelated subjects with polygenic hypercholesterolemia (PH) and without causative FH-mutations and 525 normolipemic subjects were selected. A 3103 pb from LDLR (-625 to +2468) was sequenced in 125 subjects with PH. All subjects were genotyped for 4 SNPs (rs17242346, rs17242739, rs17248720 and rs17249120) predicted to be potentially involved in transcription regulation by in silico analysis. EMSA and luciferase assays were carried out for the rs17248720 variant. Multivariable linear regression analysis using LDL-cholesterol levels as the dependent variable were done in order to find out the variables that were independently associated with LDL-cholesterol.

Results

The sequencing of the 125 PH subjects did not show variants with minor allele frequency ≥ 10%. The T-allele from g.3131C > T (rs17248720) had frequencies of 9% (PH) and 16.4% (normolipemic), p < 0.00001. Studies of this variant with EMSA and luciferase assays showed a higher affinity for transcription factors and an increase of 2.5 times in LDLR transcriptional activity (T-allele vs C-allele). At multivariate analysis, this polymorphism with the lipoprotein(a) and age explained ≈ 10% of LDL-cholesterol variability.

Conclusion

Our results suggest that the T-allele at the g.3131 T > C SNP is associated with LDL-cholesterol levels, and explains part of the LDL-cholesterol variability. As a plausible cause, the T-allele produces an increase in LDLR transcriptional activity and lower LDL-cholesterol levels.

【 授权许可】

   
2014 De Castro-Orós et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706031518268.pdf 412KB PDF download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Goldstein J, Hobbs HH, Brown MS: Familial hypercholesterolemia. In The Metabolic and Molecular Bases of Inherited Disease. 8th edition. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW. New York: Mc Graw-Hill; 2001:2863-2914.
  • [2]Civeira F, International Panel on Management of Familial Hypercholesterolemia: Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis 2004, 173:55-68.
  • [3]Innerarity TL, Weisgraber KH, Arnold KS, Mahley RW, Krauss RM, Vega GL, Grundy SM: Familial defective apolipoprotein B-100, low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA 1987, 84:6919-6923.
  • [4]Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003, 34:154-156.
  • [5]Rader DJ, Cohen J, Hobbs HH: Monogenic hypercholesterolemia, new insights in pathogenesis and treatment. J Clin Invest 2003, 111:1795-1803.
  • [6]Talmud PJ, Shah S, Whittall R, Futema M, Howard P, Cooper JA, Harrison SC, Li K, Drenos F, Karpe F, Neil HA, Descamps OS, Langenberg C, Lench N, Kivimaki M, Whittaker J, Hingorani AD, Kumari M, Humphries SE: Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia, a case–control study. Lancet 2013, 381:1293-1301.
  • [7]De Castro-Orós I, Pocoví M, Civeira F: The fine line between familial and polygenic hypercholesterolemia. Clin Lipidol 2013, 8:303-306.
  • [8]Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, Song K, Yuan X, Johnson T, Ashford S, Inouye M, Luben R, Sims M, Hadley D, McArdle W, Barter P, Kesäniemi YA, Mahley RW, McPherson R, Grundy SM, Bingham SA, Khaw KT, Loos RJ, Waeber G, Barroso I, Strachan DP, Deloukas P, Vollenweider P, Wareham NJ, Well come Trust Case Control Consortium, et al.: LDL-cholesterol concentrations, a genome-wide association study. Lancet 2008, 371:483-491.
  • [9]Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU, Crawford G, Surti A, Guiducci C, Burtt NP, Parish S, Clarke R, Zelenika D, Kubalanza KA, Morken MA, Scott LJ, Stringham HM, Galan P, Swift AJ, Kuusisto J, Bergman RN, Sundvall J, Laakso M, et al.: Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2008, 41:56-65.
  • [10]Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S, Aulchenko YS, Zhang W, Yuan X, Lim N, Luan J, Ashford S, Wheeler E, Young EH, Hadley D, Thompson JR, Braund PS, Johnson T, Struchalin M, Surakka I, Luben R, Khaw KT, Rodwell SA, Loos RJ, Boekholdt SM, Inouye M, Deloukas P, Elliott P, Schlessinger D, Sanna S, et al.: Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2010, 30:2264-2276.
  • [11]Sanna S, Li B, Mulas A, Sidore C, Kang HM, Jackson AU, Piras MG, Usala G, Maninchedda G, Sassu A, Serra F, Palmas MA, Wood WH 3rd, Njølstad I, Laakso M, Hveem K, Tuomilehto J, Lakka TA, Rauramaa R, Boehnke M, Cucca F, Uda M, Schlessinger D, Nagaraja R, Abecasis GR: Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability. PLoS Genet 2011, 7:e1002198.
  • [12]Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466:707-713.
  • [13]Worsley-Hunt R, Bernard V, Wasserman WW: Identification of cis-regulatory sequence variations in individual genome sequences. Genome Med 2011, 3:65. BioMed Central Full Text
  • [14]Reich DE, Lander ES: On the allelic spectrum of human disease. Trends Genet 2001, 17:502-510.
  • [15]Rockman MV, Wray GA: Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 2002, 19:1991-2004.
  • [16]Stamatoyannopoulos JA: The genomics of gene expression. Genomics 2004, 84:449-457.
  • [17]Wittkopp PJ: Genomic sources of regulatory variation in cis and in trans. CMLS Cell Mol Life Sci 2005, 62:1779-1783.
  • [18]Pampín S, Rodríguez-Rey JC: Functional analysis of regulatory single-nucleotide polymorphisms. Curr Opin Lipidol 2007, 18:194-198.
  • [19]Mozas P, Galetto R, Albajar M, Ros E, Pocoví M, Rodríguez-Rey JC: A mutation (-49C > T) in the promoter of the low density lipoprotein receptor gene associated with familial hypercholesterolemia. J Lipid Res 2002, 43:13-18.
  • [20]Mozas P, Castillo S, Tejedor D, Reyes G, Alonso R, Franco M, Saenz P, Fuentes F, Almagro F, Mata P, Pocoví M: Molecular characterization of familial hypercholesterolemia in Spain, identification of 39 novel and 77 recurrent mutations in LDLR. Hum Mutat 2004, 24:187.
  • [21]De Castro-Orós I, Pampín S, Bolado-Carrancio A, De Cubas A, Palacios L, Plana N, Puzo J, Martorell E, Stef M, Masana L, Civeira F, Rodríguez-Rey JC, Pocoví M: Functional analysis of LDLR promoter and 5′ UTR mutations in subjects with clinical diagnosis of familial hypercholesterolemia. Hum Mutat 2011, 32:868-872.
  • [22]Bourbon M, Duarte MA, Alves AC, Medeiros AM, Marques L, Soutar AK: Genetic diagnosis of familial hypercholesterolaemia, the importance of functional analysis of potential splice-site mutations. J Med Genet 2009, 46:352-357.
  • [23]Gómez-Gerique JA, Gutiérrez-Fuentes JA, Montoya MT, Porres A, Rueda A, Avellaneda A, Rubio MA: Lipid profile of the Spanish population, the DRECE (diet and risk of cardiovascular disease in Spain) study. DRECE study group. Med Clin (Barc) 1999, 113:730-735.
  • [24]Palacios L, Grandoso L, Cuevas N, Olano-Martín E, Martinez A, Tejedor D, Stef M: Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis 2012, 221:137-142.
  • [25]Marinescu VD, Kohane IS, Riva A: MAPPER, a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics 2005, 6:79. BioMed Central Full Text
  • [26]Riancho JA, Vázquez L, García-Pérez MA, Sainz J, Olmos JM, Hernández JL, Pérez-López J, Amado JA, Zarrabeitia MT, Cano A, Rodríguez-Rey JC: Association of ACACB polymorphisms with obesity and diabetes. Mol Genet Metab 2011, 104:670-676.
  • [27]Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInd and MatInspector, new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995, 23:4878-4884.
  • [28]Bernstein BE, Birney E, Dunham I, Gree ED, Gunter C, Snyder M, ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
  • [29]Tejedor D, Castillo S, Mozas P, Jiménez E, López M, Tejedor MT, Artieda M, Alonso R, Mata P, Simón L, Martínez A, Pocoví M, Spanish Familial Hypercholesteroelmia Group 2005: Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia. Clin Chem 2005, 51(51):1137-1144.
  文献评价指标  
  下载次数:10次 浏览次数:18次