期刊论文详细信息
BMC Research Notes
A systems biology approach for the identification of target genes for the improvement of itaconic acid production in Aspergillus species
Peter Punt1  Martien Caspers1  An Li1 
[1]TNO Microbiology and Systems biology, PO Box 360, Zeist, AJ 3700, The Netherlands
关键词: Aspergillus;    Aspergillus terreus;    Transcriptomics;    Itaconic acid;   
Others  :  1140597
DOI  :  10.1186/1756-0500-6-505
 received in 2013-09-13, accepted in 2013-11-29,  发布年份 2013
PDF
【 摘 要 】

Background

In this paper, a clone based transcriptome analysis towards the identification of genes related to itaconic acid production in Aspergillus terreus was carried out as an extension of a previously published a clone-based transcriptome analysis from a set of batch fermentation experiments. Also a publically available A. niger transcriptome dataset from cultures similar to those of the A. terreus data set was analyzed to evaluate the specificity of the approach followed for A. terreus.

Results

Besides the itaconic acid gene cluster (cis-aconitate decarboxylase, mitochondrial tri-carboxylic acid transporter and major facilitator superfamily transporter) discovered previously, additional genes of interest were identified in the A. terreus transcriptome data correlating to itaconic acid production, including 6 genes encoding enzymes in glycolysis and the pentose phosphate pathway, 4 genes functioning in vitamins synthesis, and a gene encoding a copper transporter. Only three of the 83 low pH specific genes identified from the A. niger dataset corresponded to high itaconic acid / low pH expressed genes identified from the A. terreus data set. However, in all three cases, the regulation of pH dependent gene expression was completely different between the two species.

Conclusions

An extended clone based transcriptome analysis using a clone based transcription array to identify genes correlating with itaconic acid production revealed novel genes both in the central metabolism and in other more secondary pathways such as vitamin biosynthesis and Cu2+ transport, providing targets for further metabolic and process engineering to optimize itaconic acid production.

【 授权许可】

   
2013 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325054324211.pdf 394KB PDF download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C: Itaconate biosynthesis in Aspergillus terreus. J Bacteriol 1995, 177:3573-3578.
  • [2]Okabe M, Lies D, Kanamasa S, Park EY: Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 2009, 84:597-606.
  • [3]Tate BE: Itaconic acid and derivatives. Kirch-Othmer. Encycl Chem Technol 1981, 13:865-873.
  • [4]Tsao GT, Cao NJ, Du J, Gong CS: Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 1999, 65:243-280.
  • [5]Li A, Pfelzer N, Zuijderwijk R, Punt P: Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC biotechnol 2012, 12:57. BioMed Central Full Text
  • [6]Karaffa L, Kubicek CP: Aspergillus Niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 2003, 61:189-196.
  • [7]Legiša M: Improving citric acid fermentation. Industrial Bioprocessing 2004, 26:9.
  • [8]Meyer V, Wu B, Ram AFJ: Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnology Letters 2011, 33:469-476.
  • [9]Pel HJ, De Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, De Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, Van Den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, Van Dijck PWM, Van Dijk A, Dijkhuizen L, Driessen AJM, D’Enfert C, Geysens S, Goosen C, Groot GSP, et al.: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnol 2007, 25:221-231.
  • [10]Li A, Punt P: Industrial production of organic acids by Fungi-state of arts and opportunities. In Applications of Mcriobial Engineering, Volume 1. 1st edition. Edited by Gupta VK, Schmoll M, Maki M. Boca Raton: CRC Press, Taylor & Francis Group; 2013:52-74.
  • [11]Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M: A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 2011, 48:602-611.
  • [12]Andersen MR, Lehmann L, Nielsen J: Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol 2009, 10:R47. BioMed Central Full Text
  • [13]Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P: Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol 2013, 97(9):3901-11.
  • [14]Flipphi M, Sun J, Robellet X, Karaffa L, Fekete E, Zeng AP, Kubiecek CP: Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulands and other Aspergillus spp. Fungal Genet Biol 2009, 46:19-44.
  • [15]Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR: The Aspergillus genome database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 2012, 40(Database issue):D653-9.
  • [16]Pearson K: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5 1900, 50(302):157-175.
  • [17]Liu J, Gao Q, Xu N, Liu LM: Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism. Mol BioSyst 2013, 9:1939.
  • [18]Bentley R, Thiessen CP: Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem 1957, 226:703-720.
  • [19]Garvey GS, Rocco CJ, Escalante-Semerena JC, Rayment I: The three-dimensional crystal structure of the PrpF protein of shewanella oneidensis complexed with trans-aconitate: insights into its biological function. Protein Sci 2007, 16:1274-1284.
  • [20]Crespo-Sempere A, Selma-Lázaro C, Martínez-Culebras PV, González-Candelas L: Characterization and disruption of the cipC gene in the ochratoxigenic fungus Aspergillus carbonarius. Food Res Int 2013, 54:697-705.
  文献评价指标  
  下载次数:12次 浏览次数:19次