期刊论文详细信息
BMC Microbiology
Identification of genes essential for pellicle formation in Acinetobacter baumannii
Melissa H. Brown2  Bart A. Eijkelkamp1  Uwe H. Stroeher2  Sarah K. Giles2 
[1] Research Centre for Infectious Diseases, School of Biological Sciences University of Adelaide, Adelaide, Australia;School of Biological Sciences, Flinders University, Adelaide, 5001, SA, Australia
关键词: Hydrophobicity;    Biofilm;    Virulence;    Motility;    Cyclic AMP;   
Others  :  1221680
DOI  :  10.1186/s12866-015-0440-6
 received in 2015-01-15, accepted in 2015-05-11,  发布年份 2015
PDF
【 摘 要 】

Background

Acinetobacter baumannii is an opportunistic pathogen, which has the ability to persist in the clinical environment, causing acute and chronic infections. A possible mechanism contributing to survival of A. baumannii is its ability to form a biofilm-like structure at the air/liquid interface, known as a pellicle. This study aimed to identify and characterise the molecular mechanisms required for pellicle formation in A. baumannii and to assess a broad range of clinical A. baumannii strains for their ability to form these multicellular structures.

Results

Random transposon mutagenesis was undertaken on a previously identified hyper-motile variant of A. baumannii ATCC 17978 designated 17978hm. In total three genes critical for pellicle formation were identified; cpdA, a phosphodiesterase required for degradation of cyclic adenosine monophosphate (cAMP), and A1S_0112 and A1S_0115 which are involved in the production of a secondary metabolite. While motility of the A1S_0112::Tn and A1S_0115::Tn mutant strains was abolished, the cpdA::Tn mutant strain displayed a minor alteration in its motility pattern. Determination of cAMP levels in the cpdA::Tn strain revealed a ~24-fold increase in cellular cAMP, confirming the role CpdA plays in catabolising this secondary messenger molecule. Interestingly, transcriptional analysis of the cpdA::Tn strain showed significant down-regulation of the operon harboring the A1S_0112 and A1S_0115 genes, revealing a link between these three genes and pellicle formation. Examination of our collection of 54 clinical A. baumannii strains revealed that eight formed a measurable pellicle; all of these strains were motile.

Conclusions

This study shows that pellicle formation is a rare trait in A. baumannii and that a limited number of genes are essential for the expression of this phenotype. Additionally, an association between pellicle formation and motility was identified. The level of the signalling molecule cAMP was found to be controlled, in part, by the cpdA gene product, in addition to playing a critical role in pellicle formation, cellular hydrophobicity and motility. Furthermore, cAMP was identified as a novel regulator of the operon A1S_0112-0118.

【 授权许可】

   
2015 Giles et al.

【 预 览 】
附件列表
Files Size Format View
20150803035228851.pdf 2663KB PDF download
Fig. 8. 91KB Image download
Fig. 7. 21KB Image download
Fig. 6. 76KB Image download
Fig. 5. 19KB Image download
Fig. 4. 59KB Image download
Fig. 3. 19KB Image download
Fig. 2. 46KB Image download
Fig. 1. 32KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Bergogne-Bérézin E. Treatment of Acinetobacter infections. Expert Opin Investig Drugs. 1997; 6(2):119-27.
  • [2]McQueary CN, Actis LA. Acinetobacter baumannii biofilms: Variations among strains and correlations with other cell properties. J Microbiol. 2011; 49(2):243-50.
  • [3]Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007; 5(12):939-51.
  • [4]Shin JA, Chang YS, Kim HJ, Kim SK, Chang J, Ahn CM et al.. Clinical outcomes of tigecycline in the treatment of multidrug-resistant Acinetobacter baumannii infection. Yonsei Med J. 2012; 53(5):974-84.
  • [5]Roca I, Espinal P, Vila-Farrés X, Vila J. The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol. 2012; 23(3):148.
  • [6]Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. J Clin Microbiol Rev. 2008; 21(3):538-82.
  • [7]Ramirez MS, Don M, Merkier AK, Bistué AJ, Zorreguieta A, Centrón D et al.. Naturally competent Acinetobacter baumannii clinical isolate as a convenient model for genetic studies. J Clin Microbiol. 2010; 48(4):1488-90.
  • [8]Neely AN, Maley MP, Warden GD. Computer keyboards as reservoirs for Acinetobacter baumannii in a burn hospital. Clin Infect Dis. 1999; 29(5):1358-60.
  • [9]Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15(2):167-93.
  • [10]Karaiskos I, Galani L, Baziaka F, Giamarellou H. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: a literature review. Int J Antimicrob Agents. 2013; 41(6):499-508.
  • [11]Strassle P, Thom KA, Johnsonm JK, Leekha S, Lissauer M, Zhu J et al.. The effect of terminal cleaning on environmental contamination rates of multidrug-resistant Acinetobacter baumannii. Am J Infect Control. 2012; 40(10):1005-7.
  • [12]Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis. 2008; 8(12):751-62.
  • [13]Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol. 2014; 37(2):119-27.
  • [14]Yamamoto K, Arai H, Ishii M, Igarashi Y. Involvement of flagella-driven motility and pili in Pseudomonas aeruginosa colonization at the air-liquid interface. Microbes Environ. 2012; 27(3):320-3.
  • [15]Moonmangmee S, Kawabata K, Tanaka S, Toyama H, Adachi O, Matsushita K. A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. J Biosci Bioeng. 2002; 93(2):192-200.
  • [16]Yuan J, Chen Y, Zhou G, Chen H, Gao H. Investigation of roles of divalent cations in Shewanella oneidensis pellicle formation reveals unique impacts of insoluble iron. Biochim Biophys Acta. 2013; 1830(11):5248-57.
  • [17]Espinal P, Martí S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect. 2012; 80(1):56-60.
  • [18]Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K. Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. J Biosci Bioeng. 2010; 74(8):1591-7.
  • [19]Sambandan D, Dao DN, Weinrick BC, Vilchéze C, Gurcha SS, Ojha A et al.. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio. 2013; 4(3):e00222-00213.
  • [20]Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiol. 2003; 149(12):3473-84.
  • [21]Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol. 2007; 189(13):4920-31.
  • [22]Martí S, Nait Chabane Y, Alexandre S, Coquet L, Vila J, Jouenne T et al.. Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors. PLoS One. 2011; 6(10):e26030.
  • [23]Nait Chabane Y, Martí S, Rihouey C, Alexandre S, Hardouin J, Lesouhaitier O et al.. Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface. PLoS One. 2014; 9(10):e111660.
  • [24]Lazar V. Quorum sensing in biofilms - How to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011; 17(6):280-5.
  • [25]de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009; 11(2):279-88.
  • [26]Kalivoda EJ, Brothers KM, Stella NA, Schmitt MJ, Shanks RM. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS One. 2013; 8(7):e71267.
  • [27]Shemarova IV. cAMP-dependent signal pathways in unicellular eukaryotes. Crit Rev Microbiol. 2009; 35(1):23-42.
  • [28]Skorupski K, Taylor RK. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc Natl Acad Sci U S A. 1997; 94(1):265-70.
  • [29]Ono K, Oka R, Toyofuku M, Sakaguchi A, Hamada M, Yoshida S et al.. cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ. 2014; 29(1):104-6.
  • [30]Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell. 2003; 4(2):253-63.
  • [31]Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A. 1998; 95(23):13899-904.
  • [32]Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012; 76(1):46-65.
  • [33]Fuchs EL, Brutinel ED, Jones AK, Fulcher NB, Urbanowski ML, Yahr TL et al.. The Pseudomonas aeruginosa Vfr regulator controls global virulence factor expression through cyclic AMP-dependent and -independent mechanisms. J Bacteriol. 2010; 192(14):3553-64.
  • [34]Eijkelkamp BA, Stroeher UH, Hassan KA, Papadimitrious MS, Paulsen IT, Brown MH. Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol Lett. 2011; 323(1):44-51.
  • [35]Martí S, Rodríguez-Bano J, Catel-Ferreira M, Jouenne T, Vila J, Seifert H et al.. Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species. BMC Res Notes. 2011; 4(5):1-4.
  • [36]Pour NK, Dusane DH, Dhakephalkar PK, Zamin FR, Zinjarde SS, Chopade BA. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol Med Microbiol. 2011; 62(3):328-38.
  • [37]Costa GF, Tognim MC, Cardoso CL, Carrara-Marrone FE, Garcia LB. Preliminary evaluation of adherence on abiotic and cellular surfaces of Acinetobacter baumannii strains isolated from catheter tips. Braz J Infect Dis. 2006; 10(5):346-51.
  • [38]Furuhata K, Kato Y, Goto K, Hara M, Fukuyama M. Diversity of heterotrophic bacteria isolated from biofilm samples and cell surface hydrophobicity. J Gen Appl Microbiol. 2009; 55(1):69-74.
  • [39]Kouidhi B, Zmantar T, Hentati H, Bakhrouf A. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb Pathog. 2010; 49(1-2):14-22.
  • [40]Chiku K, Tsunemi K, Yamamoto M, Ohnishi-Kameyama M, Yoshida M, Ishii T et al.. Defects in D-rhamnosyl residue biosynthetic genes affect lipopolysaccharide structure, motility, and cell-surface hydrophobicity in Pseudomonas syringae pathovar glycinea race 4. Biosci Biotechnol Biochem. 2013; 77(3):505-10.
  • [41]Raut J, Rathod V, Karuppayil SM. Cell surface hydrophobicity and adhesion: a study on fifty clinical isolates of Candida albicans. Nippon Ishinkin Gakkai Zasshi. 2010; 51(3):131-6.
  • [42]Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009; 1794(5):808-16.
  • [43]Eijkelkamp BA, Stroeher UH, Hassan KA, Elbourne LD, Paulsen IT, Brown MH. H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun. 2013; 81(7):2574-83.
  • [44]Stretton S, Techkarnjanaruk S, McLennan AM, Goodman AE. Use of green fluorescent protein to tag and investigate gene expression in marine bacteria. Appl Environ Microbiol. 1998; 64(7):2554-9.
  • [45]Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL, Wolfgang MC. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J Bacteriol. 2010; 192(11):2779-90.
  • [46]Hunger M, Schmucker R, Kishan V, Hillen W. Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene. 1990; 87(1):45-51.
  • [47]Clemmer KM, Bonomo RA, Rather PN. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiol. 2011; 157(9):2534-44.
  • [48]Stewart CR, Rossier O, Cianciotto NP. Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol. 2009; 191(5):1537-46.
  • [49]Rumbo-Feal S, Gómez MJ, Gayoso C, Álvarez-Fraga L, Cabral MP, Aransay AM et al.. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One. 2013; 8(8):e72968.
  • [50]Henrichsen J. The influence of changes in the environment on twitching motility. Acta Pathol Microbiol Scand B. 1975; 83(3):179-86.
  • [51]Skiebe E, de Berardinis V, Morczinek P, Kerrinnes T, Faber F, Lepka D et al.. Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol. 2012; 302(3):117-28.
  • [52]McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol. 2012; 10(1):27-38.
  • [53]Saroj SD, Rather PN. Streptomycin inhibits quorum sensing in Acinetobacter baumannii. Antimicrob Agents Chemother. 2013; 57(4):1926-9.
  • [54]Carruthers MD, Harding CM, Baker BD, Bonomo RA, Hujer KM, Rather PN et al.. Draft genome sequence of the clinical isolate Acinetobacter nosocomialis strain M2. Genome Announc. 2013; 1(6):e00906-13.
  • [55]Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A. 2001; 98(12):6911-6.
  • [56]Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 2014; 15:1020. BioMed Central Full Text
  • [57]Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-b-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol. 2009; 191(19):5953-63.
  • [58]Wada A, Mikkola R, Kurland CG, Ishihama A. Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli. J Bacteriol. 2000; 182(10):2893-9.
  • [59]Eijkelkamp BA, Hassan KA, Paulsen IT, Brown MH. Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics. 2011; 12(1):126. BioMed Central Full Text
  • [60]Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166(4):557-80.
  • [61]Simon R, Priefer U, Puhler A. A broad host range mobilization system for invivo genetic-engineering - transposon mutagenesis in Gram-negative bacteria. BioTechnol. 1983; 1(9):784-91.
  • [62]Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985; 33(1):103-19.
  • [63]Mussi MA, Gaddy JA, Cabruja M, Arivett BA, Viale AM, Rasia R et al.. The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol. 2010; 192(24):6336-45.
  • [64]Golic A, Vaneechoutte M, Nemec A, Viale AM, Actis LA, Mussi MA. Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter. PLoS One. 2013; 8(1):e55059.
  • [65]Rosenberg E, Gottlieb A, Rosenberg M. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect Immun. 1983; 39(3):1024-8.
  • [66]Matthysse AG, Stretton S, Dandie C, McClure NC, Goodman AE. Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol Lett. 1996; 145(1):87-94.
  • [67]Brazma A, Vilo J. Gene expression data analysis. Microbes Infect. 2001; 3(10):823-9.
  • [68]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4):402-8.
  文献评价指标  
  下载次数:68次 浏览次数:16次