期刊论文详细信息
BMC Research Notes
In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability
Bernd Denecke1  Arian Aryani1 
[1] Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
关键词: RNA integrity;    RNA stability;    Ribonuclease;    Ribosomal RNA;    miRNA;    mRNA;   
Others  :  1177872
DOI  :  10.1186/s13104-015-1114-z
 received in 2013-12-11, accepted in 2015-03-31,  发布年份 2015
PDF
【 摘 要 】

Background

MicroRNA has become important in a wide range of research interests. Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs.

Methods

In this in vitro study, equal amounts of total RNA of identical RNA pools were treated with different ribonucleases under defined conditions. Degradation of total RNA was assessed using microfluidic analysis mainly based on ribosomal RNA. To evaluate the influence of the specific RNases on the different classes of RNA (ribosomal RNA, mRNA, miRNA) ribosomal RNA as well as a pattern of specific mRNAs and miRNAs was quantified using RT-qPCR assays. By comparison to the untreated control sample the ribonuclease-specific degradation grade depending on the RNA class was determined.

Results

In the present in vitro study we have investigated the stabilities of mRNA and microRNA with respect to the influence of ribonucleases used in laboratory practice. Total RNA was treated with specific ribonucleases and the decay of different kinds of RNA was analysed by RT-qPCR and miniaturized gel electrophoresis. In addition, we have examined whether the integrity observed for ribosomal RNA is applicable to microRNA and mRNA. Depending on the kind of ribonuclease used, our results demonstrated a higher stability of microRNA relative to mRNA and a limitation of the relevance of ribosomal RNA integrity to the integrity of other RNA groups.

Conclusion

Our results suggest that the degradation status of ribosomal RNA is not always applicable to mRNA and microRNA. In fact, the stabilities of these RNA classes to exposure to ribonucleases are independent from each other, with microRNA being more stable than mRNA. The relative stability of microRNAs supports their potential and further development as biomarkers in a range of applications.

【 授权许可】

   
2015 Aryani and Denecke; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150504032116332.pdf 963KB PDF download
Figure 3. 31KB Image download
Figure 2. 46KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
  • [2]Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-54.
  • [3]Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A: MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 2010, 16(6):1087-95.
  • [4]Zeng Y, Yi R, Cullen BR: MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 2003, 100(17):9779-84.
  • [5]Raghavan A, Ogilvie RL, Reilly C, Abelson ML, Raghavan S, Vasdewani J, et al.: Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res 2002, 30(24):5529-38.
  • [6]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-5.
  • [7]Fabian MR, Sonenberg N, Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010, 79:351-79.
  • [8]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466(7308):835-40.
  • [9]Eikmans M, Rekers NV, Anholts JD, Heidt S, Claas FH: Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation. Blood 2013, 121(11):e81-9.
  • [10]Farazi TA, Spitzer JI, Morozov P, Tuschl T: miRNAs in human cancer. J Pathol 2011, 223(2):102-15.
  • [11]Chen G, Wang J, Cui Q: Could circulating miRNAs contribute to cancer therapy? Trends Mol Med 2013, 19(2):71-3.
  • [12]Tijsen AJ, Pinto YM, Creemers EE: Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012, 303(9):H1085-95.
  • [13]Shan J, Feng L, Luo L, Wu W, Li C, Li S, et al.: MicroRNAs: potential biomarker in organ transplantation. Transpl Immunol 2011, 24(4):210-5.
  • [14]Ceribelli A, Yao B, Dominguez-Gutierrez PR, Nahid MA, Satoh M, Chan EK: MicroRNAs in systemic rheumatic diseases. Arthritis Res Ther 2011, 13(4):229. BioMed Central Full Text
  • [15]Lodish HF: Molecular cell biology. 4th edition. W.H. Freeman, New York; 2000.
  • [16]Wei R, Stewart EA, Amoaku WM: Suitability of endogenous reference genes for gene expression studies with human intraocular endothelial cells. BMC Res Notes 2013, 6:46. BioMed Central Full Text
  • [17]Lian Z, Karpikov A, Lian J, Mahajan MC, Hartman S, Gerstein M, et al.: A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3′ end RNA polyadenylation. Genome Res 2008, 18(8):1224-37.
  • [18]Franceschini N, Reiner AP, Heiss G: Recent findings in the genetics of blood pressure and hypertension traits. Am J Hypertens 2011, 24(4):392-400.
  • [19]Gan L, Schwengberg S, Denecke B: MicroRNA profiling during cardiomyocyte-specific differentiation of murine embryonic stem cells based on two different miRNA array platforms. PLoS One 2011., 6(10) Article ID e25809
  • [20]Fichtlscherer S, Zeiher AM, Dimmeler S: Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol 2011, 31(11):2383-90.
  • [21]Brattelid T, Aarnes EK, Helgeland E, Guvaag S, Eichele H, Jonassen AK: Normalization strategy is critical for the outcome of miRNA expression analyses in the rat heart. Physiol Genomics 2011, 43(10):604-10.
  • [22]Jin J, Tang S, Xia L, Du R, Xie H, Song J, et al.: MicroRNA-501 promotes HBV replication by targeting HBXIP. Biochem Biophys Res Commun 2013, 430(4):1228-33.
  • [23]Turchinovich A, Samatov TR, Tonevitsky AG, Burwinkel B: Circulating miRNAs: cell-cell communication function? Front Genet 2013, 4:119.
  • [24]Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105(30):10513-8.
  • [25]Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl MW: mRNA and microRNA quality control for RT-qPCR analysis. Methods 2010, 50(4):237-43.
  • [26]Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW: Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 2006, 28(19):1601-13.
  • [27]Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, et al.: Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem 2010, 56(6):998-1006.
  • [28]Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, et al.: Differential regulation of microRNA stability. RNA 2010, 16(5):1032-9.
  • [29]Raines RT: Ribonuclease A. Chem Rev 1998, 98(3):1045-66.
  • [30]Volkin E, Cohn WE: On the structure of ribonucleic acids. II. The products of ribonuclease action. J Biol Chem 1953, 205(2):767-82.
  • [31]Meador J 3rd, Kennell D: Cloning and sequencing the gene encoding Escherichia coli ribonuclease I: exact physical mapping using the genome library. Gene 1990, 95(1):1-7.
  • [32]Cannistraro VJ, Kennell D: RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. J Bacteriol 1991, 173(15):4653-9.
  • [33]Schultz SJ, Champoux JJ: RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008, 134(1-2):86-103.
  • [34]Shinozaki K, Okazaki T: T7 gene 6 exonuclease has an RNase H activity. Nucleic Acids Res 1978, 5(11):4245-61.
  • [35]Meiss G, Friedhoff P, Hahn M, Gimadutdinow O, Pingoud A: Sequence preferences in cleavage of dsDNA and ssDNA by the extracellular Serratia marcescens endonuclease. Biochemistry 1995, 34(37):11979-88.
  • [36]Messmore JM, Fuchs DN, Raines RT: Ribonuclease a: revealing structure-function relationships with semisynthesis. J Am Chem Soc 1995, 117(31):8057-60.
  • [37]Rosenberg HF: RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 2008, 83(5):1079-87.
  • [38]Cerritelli SM, Crouch RJ: Ribonuclease H: the enzymes in eukaryotes. Febs J 2009, 276(6):1494-505.
  • [39]Friedhoff P, Gimadutdinow O, Pingoud A: Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res 1994, 22(16):3280-7.
  • [40]Li Z, Pandit S, Deutscher MP: 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci U S A 1998, 95(6):2856-61.
  • [41]Deutscher MP, Marlor CW: Purification and characterization of Escherichia coli RNase T. J Biol Chem 1985, 260(11):7067-71.
  • [42]Deutscher MP, Marlor CW, Zaniewski R: RNase T is responsible for the end-turnover of tRNA in Escherichia coli. Proc Natl Acad Sci U S A 1985, 82(19):6427-30.
  文献评价指标  
  下载次数:45次 浏览次数:8次