期刊论文详细信息
BMC Genetics
Conservation genetics of a threatened butterfly: comparison of allozymes, RAPDs and microsatellites
Michel Baguette2  Sofie Vandewoestijne1  Camille Turlure1 
[1] Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Place Croix du Sud 4, Louvain-la-Neuve B-1348, Belgium;Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution et Biodiversité, UMR 7205, 57 rue Cuvier, Paris cedex 5 F-75005, France
关键词: Neutral marker;    Marker comparison;    Genetic differentiation;    Genetic diversity;    Boloria aquilonaris;   
Others  :  1085389
DOI  :  10.1186/s12863-014-0114-7
 received in 2014-06-02, accepted in 2014-10-16,  发布年份 2014
PDF
【 摘 要 】

Background

Addressing genetic issues in the management of fragmented wild populations of threatened species is one of the most important challenges in conservation biology. Nowadays, a diverse array of molecular methods exists to assess genetic diversity and differentiation of wild populations such as allozymes, dominant markers and co-dominant markers. However it remains worthwhile i) to compare the genetic estimates obtained using those several markers in order to ii) test their relative utility, reliability and relevance and iii) the impact of these results for the design of species-specific conservation measures.

Results

Following the successful isolation of 15 microsatellites loci for the cranberry fritillary butterfly, Boloria aquilonaris, we analyzed the genetic diversity and structure of eight populations located in four different landscapes, at both the regional and the landscape scales. We confront results based on microsatellites to those obtained using allozymes and RAPDs on the same samples. Genetic population analyses using different molecular markers indicate that the B. aquilonaris populations are characterized by a weak genetic variation, likely due to low effective population size and low dispersal at the regional scale. This results in inbreeding in some populations, which may have detrimental consequences on their long term viability. However, gene flow within landscape is limited but not inexistent, with some long range movements resulting in low or no isolation by distance. Spatial structuring was detected among the most isolated populations.

Conclusions

The use of allozymes and RAPD are of very limited value to determine population structuring at small spatial (i.e. landscape) scales, microsatellites giving much higher estimate resolution. The use of RAPD data is also limited for evidencing inbreeding. However, coarse-grain spatial structure (i.e. regional scale), and gene flow estimates based on RAPD and microsatellites data gave congruent results. At a time with increasing development of new molecular methods and markers, dominant markers may still be worthwhile to consider in organisms for which no genomic information is available, and for which limited resources are available.

【 授权许可】

   
2014 Turlure et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172918617.pdf 1891KB PDF download
Figure 2. 54KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Frankham R: Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 2010, 143:1919-1927.
  • [2]Frankham R: Genetics and extinction. Biol Conserv 2005, 126:131-140.
  • [3]Arif IA, Khan HA: Molecular markers for biodiversity analysis of wildlife animals: a brief review. Anim Biodivers Conserv 2009, 32:9-17.
  • [4]Behura SK: Molecular marker systems in insects: current trends and future avenues. Mol Ecol 2006, 15:3087-3113.
  • [5]Zhang DX, Hewitt GM: Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 2003, 12:563-584.
  • [6]Pogson GH, Mesa KA, Boutilier RG: Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 1995, 139:375-385.
  • [7]Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R: Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol 1998, 7:339-353.
  • [8]Freeland J: Molecular Ecology. John Wiley & Sons, Chichester; 2006.
  • [9]Richardson BJ, Baverstock PR, Adams M: Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies. Academic Press, San Diego; 1988.
  • [10]Allendorf FW, Luikart G: Conservation and the Genetics of Populations. Blackwell Publishing, Oxford; 2007.
  • [11]Vandewoestijne S, Schtickzelle N, Baguette M: Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 2008, 6:46. BioMed Central Full Text
  • [12]Meudt HM, Clarke AC: Almost Forgotten or Latest Practice? AFLP applications, analyses and advances. Trends Plant Sci 2007, 12:106-117.
  • [13]Campbell D, Duchesne P, Bernatchez L: AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 2003, 12:1979-1991.
  • [14]Finger A, Klank C: Review Molecular Methods: Blessing or Curse? In Relict Species. Edited by Habel J, Assmann T. Springer Berlin Heidelberg, Berlin Heidelberg; 2010:309-320.
  • [15]Jarne P, Lagoda PJL: Microsatellites, from molecules to populations and back. Trends Ecol Evol 1996, 11:424-429.
  • [16]Selkoe KA, Toonen RJ: Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006, 9:615-629.
  • [17]Neve G, Meglecz E: Microsatellite frequencies in different taxa. Trends Ecol Evol 2010, 15:376-377.
  • [18]Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD: Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 2001, 414:65.
  • [19]New TR: Are Lepidoptera an effective ″umbrella group″ for biodiversity conservation? J Insect Conserv 1997, 1:5-12.
  • [20]Meglecz E, Petenian F, Danchin E, D'Acier AC, Rasplus JY, Faure E: High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 2004, 13:1693-1700.
  • [21]Sarhan A: Isolation and characterization of five microsatellite loci in the Glanville fritillary butterfly (Melitaea cinxia). Mol Ecol Notes 2006, 6:163-164.
  • [22]Malausa T, Gilles A, Meglecz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé P-JG, Ferreira S, Martin J-F: High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 2011, 11:638-644.
  • [23]Abdelkrim J, Robertson BC, Stanton JAL, Gemmel NJ: Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 2009, 46:185-191.
  • [24]Vandewoestijne S, Turlure C, Baguette M: Development of novel microsatellite markers for a specialist species of Lepidoptera, Boloria aquilonaris (Nymphalidae), based on 454 sequences. Eur J Entomol 2011, 109:129-134.
  • [25]Fichefet V, Barbier Y, Baugnée J-Y, Dufrêne M, Goffart P, Maes D, Van Dyck H: Papillons de jour de Wallonie (1985-2007). Publication du Groupe de Travail Papillons de jour Lycaena et du Centre de Recherche de la Nature, des Forêts et du Bois (MRW-DGRNE), Gembloux; 2008.
  • [26]Baguette M, Schtickzelle N: Local population dynamics are important to the conservation of metapopulations in highly fragmented landscapes. J Appl Ecol 2003, 40:404-412.
  • [27]Mousson L, Nève G, Baguette M: Metapopulation structure and conservation of the cranberry fritillary Boloria aquilonaris (Lepidoptera, Nymphalidae) in Belgium. Biol Conserv 1999, 87:285-293.
  • [28]Baguette M: Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 2003, 26:153-160.
  • [29]Vandewoestijne S, Baguette M: The genetic structure of endangered populations in the Cranberry Fritillary, Boloria aquilonaris (Lepidoptera, Nymphalidae): RAPDs vs allozymes. Heredity 2002, 89:439-445.
  • [30]Vandewoestijne S, Baguette M: Demographic versus genetic dispersal measures. Pop Ecol 2004, 46:281-285.
  • [31]Lynch M, Milligan BG: Analysis of population genetic structure with RAPD markers. Mol Ecol 1994, 3:91-99.
  • [32]Dakin EE, Avise JC: Microsatellite null alleles in parentage analysis. Heredity 2004, 93:504-509.
  • [33]Finger A, Schmitt T, Zachos FE, Meyer M, Assmann T, Habel JC: The genetic status of the violet copper Lycaena helle - a relict of the cold past in times of global warming. Ecography 2009, 32:382-390.
  • [34]Vandewoestijne S, Van Dyck H: Population genetic differences along a latitudinal cline between original and recently colonized habitat in a butterfly. Plos One 2010, 5:e13810.
  • [35]Vandewoestijne S, Baguette M: Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas 2004, 141:199-206.
  • [36]Hedrick P: Large variance in reproductive success and the Ne/N ratio. Evolution 2005, 59:1596-1599.
  • [37]Saarinen EV, Austin JD, Daniels JC: Genetic estimates of contemporary effective population size in an endangered butterfly indicate a possible role for genetic compensation. Evol Appl 2010, 3:28-39.
  • [38]Watts PC, Saccheri IJ, Kemp SJ, Thompson DJ: Effective population sizes and migration rates in fragmented populations of an endangered insect (Coenagrion mercuriale: Odonata). J Anim Ecol 2007, 76:790-800.
  • [39]Reed DH, Frankham R: Correlation between fitness and genetic diversity. Conserv Biol 2003, 17:230-237.
  • [40]Legrand D, Tenaillon MI, Matyot P, Gerlach J, Lachaise D, Cariou ML: Species-wide genetic variation and demographic history of Drosophila sechellia, a species lacking population structure. Genetics 2009, 182:1197-1206.
  • [41]Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I: Inbreeding and extinction in a butterfly metapopulation. Nature 1998, 392:491-494.
  • [42]Stevens VM, Turlure C, Baguette M: A meta-analysis of dispersal in butterflies. Biol Rev 2010, 85:625-642.
  • [43]Nève G, Barascud B, Descimon H, Baguette M: Genetic structure of Proclossiana eunomia populations at the regional scale (Lepidoptera, Nymphalidae). Heredity 2000, 84:657-666.
  • [44]Mills LS, Allendorf FW: The one-migrant-per-generation rule in conservation and management. Conserv Biol 1996, 10:1509-1518.
  • [45]Wang H: Application of the one-migrant-per-generation rule to conservation and management. Conserv Biol 2004, 18:332-343.
  • [46]Kisdi E: Dispersal: risk spreading versus local adaptation. Am Nat 2002, 159:579-596.
  • [47]Tallmon DA, Luikart G, Waples RS: The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 2004, 19:489-496.
  • [48]Turlure C, Choutt J, Baguette M, Van Dyck H: Microclimate buffering and resource-based habitat of a relict butterfly species: significance for conservation under climate change. Global Change Biol 2010, 16:1883-1893.
  • [49]Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N: Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 2010, 14:379-388.
  • [50]Turlure C, Schtickzelle N, Baguette M: Resource grain scales mobility and adult morphology in butterflies. Land Ecol 2010, 25:95-108.
  • [51]Turlure C, Baguette M, Stevens VM, Maes D: Species- and sex-specific adjustments of movement behavior to landscape heterogeneity in butterflies. Behav Ecol 2011, 22:967-975.
  • [52]Gao L, Schaal B, Zhang C, Jia J, Dong Y: Assessment of population genetic structure in common wild rice Oryza rufipogon Griff. using microsatellite and allozyme markers. Theor Appl Genet 2002, 106:173-180.
  • [53]Freville H, Justy F, Olivieri I: Comparative allozyme and microsatellite population structure in a narrow endemic plant species, Centaurea corymbosa Pourret (Asteraceae). Mol Ecol 2001, 10:879-889.
  • [54]Allendorf FW, Seeb LW: Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 2000, 54:640-651.
  • [55]Abdul Muneer PM, Gopalakrishnan A, Musammilu KK, Mohindra V, Lal KK, Basheer VS, Lakra WS: Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers. Mol Biol Rep 2009, 36:1779-1791.
  • [56]Lougheed SC, Gibbs HL, Prior KA, Weatherhead PJ: A comparison of RAPD versus microsatellite DNA markers in population studies of the Massasauga rattlesnake. J Hered 2000, 91:458-463.
  • [57]Carlsson M, Söderberg L, Tegelström H: The genetic structure of adders (Vipera berus) in Fennoscandia: congruence between different kinds of genetic markers. Mol Ecol 2004, 13:3147-3152.
  • [58]Ross KG, Shoemaker DD, Krieger MJ, DeHeer CJ, Keller L: Assessing genetic structure with multiple classes of molecular markers: a case study involving the introduced fire ant Solenopsis invicta. Mol Biol Evol 1999, 16:525-543.
  • [59]Black WC: PCR with arbitrary primers: approach with care. Insect Mol Biol 1993, 2:1-6.
  • [60]Ekblom R, Galindo J: Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 2011, 107:1-15.
  • [61]Allendorf FW, Hohenlohe PA, Luikart G: Genomics and the future of conservation genetics. Nat Rev Genet 2010, 11:697-709.
  • [62]Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma R, Hedrick PW: Conservation genetics in transition to conservation genomics. Trends Genet 2010, 26:177-187.
  • [63]van Swaay C, Warren M, Loïs G: Biotope use and trends of European butterflies. J Insect Conserv 2006, 10:189-209.
  • [64]Vandewoestijne S, Nève G, Baguette M: Spatial and temporal population genetic structure of the butterfly Aglais urticae L. (Lepidoptera, Nymphalidae). Mol Ecol 1999, 8:1539-1543.
  • [65]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995, 57:289-300.
  • [66]Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
  • [67]Chapuis MP, Estoup A: Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007, 24:621-631.
  • [68]Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf F: Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 2010, 11:355-373.
  • [69]Tallmon DA, Koyuk A, Luikart G, Beaumont MA: COMPUTER PROGRAMS: onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 2008, 8:299-301.
  • [70]Waples RS, Do C: LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 2008, 8:753-756.
  • [71]Tallmon DA, Gregovich D, Waples RS, Scott Baker C, Jackson J, Taylor BL, Archer E, Martien KK, Allendorf FW, Schwartz MK: When are genetic methods useful for estimating contemporary abundance and detecting population trends? Mol Ecol Resour 2010, 10:684-692.
  • [72]White GC, Burnham KP: Program MARK: survival estimation from populations of marked animals. Bird Study 1999, 46(Supplement):S120-S139.
  • [73]Schtickzelle N, Le Boulengé E, Baguette M: Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population. Oikos 2002, 97:349-360.
  • [74]Cornuet JM, Luikart G: Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144:2001-2014.
  • [75]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38:1358-1370.
  • [76]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform 2005, 1:47-50.
  • [77]Jombart T, Devillard S, Balloux F: Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010, 11:94. BioMed Central Full Text
  • [78]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [79]Jombart T: adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24:1403-1405.
  • [80]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [81]Ehrich D: aflpdat: a collection of r functions for convenient handling of AFLP data. Mol Ecol Notes 2006, 6:603-604.
  • [82]Slatkin M: Isolation by distance in equilibrium and non-equilibrium populations. Evolution 1993, 47:264-279.
  • [83]Beerli P, Felsenstein J: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 2001, 98:4563-4568.
  文献评价指标  
  下载次数:0次 浏览次数:10次