期刊论文详细信息
BMC Evolutionary Biology
Global climate changes drive ecological specialization of mammal faunas: trends in rodent assemblages from the Iberian Plio-Pleistocene
Manuel Hernández Fernández2  Ana Moreno Bofarull3  Aurora Mesa3  Juan L Cantalapiedra1  Ana R Gómez Cano3 
[1] Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Pinar 25, Madrid 28006, Spain;Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), José Antonio Novais 2, Madrid 28040, Spain;Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, José Antonio Novais 2, Madrid 28040, Spain
关键词: Specialist;    Macroevolution;    Habitat theory;    Glaciations;    Generalist;    Evolutionary ecology;    Community;    Biome;   
Others  :  1087455
DOI  :  10.1186/1471-2148-13-94
 received in 2012-11-07, accepted in 2013-04-24,  发布年份 2013
PDF
【 摘 要 】

Background

Several macroevolutionary hypotheses propose a synchrony between climatic changes and variations in the structure of faunal communities. Some of them focus on the importance of the species ecological specialization because of its effects on evolutionary processes and the resultant patterns. Particularly, Vrba’s turnover pulse hypothesis and resource-use hypothesis revolve around the importance of biome inhabitation. In order to test these hypotheses, we used the Biomic Specialization Index, which is based on the number of biomes occupied by each species, and evaluated the changes in the relative importance of generalist and specialist rodents in more than forty fossil sites from the Iberian Plio-Pleistocene.

Results

Our results indicate that there was a decrease in the specialization degree of rodent faunas during the Pliocene due to the global cooling that triggered the onset of the glacial events of the Cenozoic (around 2.75 Ma). The subsequent faunal transition after this critical paleoenvironmental event was characterized by an increase of specialization related to the adaptation to the new environmental conditions, which was mainly associated with the Pleistocene radiation of Arvicolinae (voles).

Conclusions

The pattern of faunal turnover is correlated with the development of the modern glaciations in the Northern Hemisphere around 2.75 Ma, and represents a reorganization of the rodent communities, as suggested by the turnover pulse hypothesis. Our data also support the resource-use hypothesis, which presumes the role of the degree of specialization in resources specifically related to particular biomes as a driver of differential speciation and extinction rates. These results stress the intimate connection between ecological and evolutionary changes.

【 授权许可】

   
2013 Gómez Cano et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116030459871.pdf 809KB PDF download
Figure 4. 45KB Image download
Figure 3. 60KB Image download
Figure 2. 25KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Darwin CR, Wallace AR: On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. 1858, 3:46-50.
  • [2]Darwin CR: On the Origin of the Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray; 1859.
  • [3]Van Valen L: A new evolutionary law. Evolutionary Theory 1973, 1:1-30.
  • [4]Gulick JT: On the variation of species as related to their geographical distribution, Illustrated by the Achatinellinae. Nature 1872, 6:222-224.
  • [5]Gulick JT: On the diversity of evolution under one set of external conditions. J. Proc. Linn. Soc. 1873, 11:496-505.
  • [6]Wallace AR: Darwinism: An exposition of the Theory of Natural Selection, with some of its applications. London: Macmillan; 1912.
  • [7]Vrba ES: Evolution, species and fossils: how does life evolve? S Afr J Sci 1980, 76:61-84.
  • [8]Stenseth NC, Maynard Smith J: Coevolution in ecosystems: red queen evolution or stasis? Evolution 1984, 38:870-880.
  • [9]Barnosky AD: Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the Northern Rocky Mountains. J Vertebr Paleontol 2001, 21:172-185.
  • [10]Badgley C, Barry JC, Morgan ME, Nelson SV, Behrensmeyer AK, Cerling TE, Pilbeam D: Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. PNAS 2008, 105:12145-12149.
  • [11]Benton J: The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 2009, 323:728-732.
  • [12]Vrba ES: Mammals as a key to evolutionary theory. J Mammal 1992, 73:1-28.
  • [13]Vrba ES: On the connections between paleoclimate and evolution. In Paleoclimate and Evolution with emphasis on Human Origins. Edited by Vrba E, Denton GH, Partridge TC, Burkle LH. New Haven: Yale University Press; 1995:24-45.
  • [14]Vrba ES: Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evol Ecol 1987, 1:283-300.
  • [15]Hernández Fernández M, Vrba ES: Macroevolutionary processes and biomic specialization: testing the resource-use hypothesis. Evol Ecol 2005, 19:199-219.
  • [16]Moreno Bofarull A, Arias Royo A, Hernández Fernández M, Ortiz-Jaureguizar E, Morales J: Influence of continental history on the ecological specialization and macroevolutionary processes in the mammalian assemblage of South America: differences between small and large mammals. BMC Evol Biol 2008, 8:97. BioMed Central Full Text
  • [17]Cantalapiedra JL, Hernández Fernández M, Morales J: Biomic specialization and speciation rates in ruminants (Cetartiodactyla, Mammalia): a test of the resource-use hypothesis at the global scale. PLoS One 2011, 6(12):1-10. e28749
  • [18]Rowe KC, Reno ML, Richmond DM, Adkins RM, Steppan SJ: Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): Multilocus systematics of the old endemic rodents (Muroidea: Murinae). Mol Phylogenet Evol 2008, 47:84-101.
  • [19]Musser GG, Carleton MD: Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference. Edited by Wilson DE, Reeder DM. Baltimore: The Johns Hopkins University Press; 2005:894-1531.
  • [20]Heaney L, Balete DS: Rhynchomys isarogensis. IUCN 2012: IUCN Red List of Threatened Species Version 2012.2 2012. http://www.iucnredlist.org webcite
  • [21]Heaney L, Tabaranza B, Balete DS: Rhynchomys soricoides. IUCN 2012: IUCN Red List of Threatened Species Version 2012.2 2012. http://www.iucnredlist.org webcite
  • [22]Gomes Rodrigues H, Merceron G, Viriot L: Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications. Naturwissenschaften 2009, 96:537-542.
  • [23]Boitani L: Stochomys longicaudatus. IUCN 2012: IUCN Red List of Threatened Species Version 2012.2 2012. http://www.iucnredlist.org webcite
  • [24]Vrba ES: Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 1985, 81:229-236.
  • [25]Vrba ES: Turnover-pulses, the Red Queen, and related topics. Am J Sci 1993, 293:418-452.
  • [26]Vrba ES: What are the biotic hierarchies of integration and linkage? In Complex organismal functions: integration and evolution in vertebrates. Edited by Wake DB, Roth G. New York: John Wiley & Sons; 1989:379-401.
  • [27]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 293:686-693.
  • [28]Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF: The Phanerozoic record of global sea-level change. Science 2005, 310:1293-1298.
  • [29]Ruddimann WF: A Paleoclimatic Enigma? Science 2010, 328:838-839.
  • [30]van der Meulen AJ, Daams R: Evolution of Early-Middle Miocene rodent faunas in relation to long-term palaeoenvironmental changes. Palaeogeogr Palaeoclimatol Palaeoecol 1992, 93:227-253.
  • [31]van Dam JA, Weltje GJ: Reconstruction of the Late Miocene climate of Spain using rodent palaeocommunity successions: an application of end-member modelling. Palaeogeogr Palaeoclimatol Palaeoecol 1999, 151:267-305.
  • [32]Hernández Fernández M: Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecol Biogeogr 2001, 10:189-204.
  • [33]Hernández Fernández M: Rodent paleofaunas as indicators of climatic change in Europe during the last 125,000 years. Quaternary Res 2006, 65:308-323.
  • [34]Hernández Fernández M, Álvarez-Sierra MA, Peláez-Campomanes P: Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 2007, 251:500-526.
  • [35]Sesé C: Los roedores y lagomorfos del Neógeno de España. Estudios Geol 2006, 62:429-480.
  • [36]Daams R, van der Meulen AJ, Peláez-Campomanes P, Álvarez-Sierra MA: Trends in rodent assemblages from the Aragonian (Early-Middle Miocene) of the Calatayud-Daroca Basin, Aragon, Spain. In Hominoid evolution and climatic change in Europe Vol 1 The evolution of Neogene terrestrial ecosystems in Europe. Edited by Agustí J, Rook L, Andrews P. Cambridge: Cambridge University Press; 1999:127-139.
  • [37]van Dam JA, Aziz HA, Álvarez-Sierra MA, Hilgen FJ, van den Hoek Ostende LW, Lourens LJ, Mein P, van der Meulen AJ, Peláez-Campomanes P: Long-period astronomical forcing of mammal turnover. Nature 2006, 443:687-691.
  • [38]Hernández Fernández M, Azanza B, Álvarez-Sierra MA: Iberian Plio-Pleistocene biochronology: micromammalian evidence for MNs and ELMAs calibration in southwestern Europe. J Quaternary Sci 2004, 19:605-616.
  • [39]van de Weerd A, Daams R: Quantitative composition of rodent faunas in the Spanish Neogene and paleoecological implications. I & II. P K Ned Akad B Phys 1978, 81:448-473.
  • [40]Walter H: Vegetationszonen und klima. Stuttgart: Eugen Ulmer; 1970.
  • [41]Daams R, van der Meulen AJ: Paleoecological interpretation of micromammal faunal successions in the Upper Oligocene and Miocene of north central Spain. Paléobiol Continent 1984, 14:241-257.
  • [42]Hernández Fernández M, Peláez-Campomanes P: Ecomorphological characterization of Murinae and hypsodont “Cricetidae” (Rodentia) from the Iberian Plio-Pleistocene. Col Pa Vol. Extraordinario 2003, 1:237-251.
  • [43]Hernández Fernández M, Vrba ES: Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. J Biogeogr 2005, 32:903-918.
  • [44]Friedman JH: Multivariate adaptive regression splines. Am Nat 1991, 19:1-67.
  • [45]Wilson DE, Reeder DM: Mammal Species of the World. A Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press; 2005.
  • [46]Steppan S, Adkins RM, Anderson J: Phylogeny and Divergence-Date Estimates of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes. Sys Biol 2004, 53:533-553.
  • [47]Fabre P-H, Hautier L, Dimitrov D, Douzery EJP: A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology 2012, 12:88. BioMed Central Full Text
  • [48]Mein P: European Miocene Mammal Biochronology. In The Miocene Land Mammals of Europe. Edited by Heisig GRK. München: Verlag Dr. Friedrich Pfeil; 1999:25-38.
  • [49]Suc J-P, Zagwijn WH: Plio-Pleistocene correlations between the northwestern Mediterranean region and northwestern Europe according to recent biostratigraphic and palaeoclimatic data. Boreas 1983, 12:153-166.
  • [50]Drivaliari A, Ticleanu N, Marinescu F, Marunteanu M, Suc J-P: A Pliocene climatic record at Ticleni (southwestern Romania). In The Pliocene: Time of Change. Edited by Wrenn JH, Suc J-P, Leroy SAG. Dallas: American Association of Stratigraphic Palynologists Foundation; 1999:227-240.
  • [51]Jaeger J-J: The evolution of biodiversity among the Southwest European Neogene rodent (Mammalia, Rodentia) communities: pattern and process of diversification and extinction. Palaeogeogr Palaeoclimatol Palaeoecol 1994, 111:305-336.
  • [52]Chaline J, Brunet-Lecomte P, Montuire S, Viriot L, Courant F: Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Ann Zool Fenn 1999, 36:239-267.
  • [53]Chaline J: Arvicolid data (Arvicolidae, Rodentia) and evolutionary concepts. Evolutionary Biology 1987, 21:237-310.
  • [54]Martin RA, Siefker A, Marcolini F: Modelling the morphology and evolution of the linea sinuosa (crown-root junction) in arvicolid rodents; a test with Pliocene Ogmodontomys from Kansas, USA. Lethaia 2009, 42:155-166.
  • [55]Potts R, Behrensmeyer AK: Late Cenozoic terrestrial ecosystems. In Terrestrial Ecosystems trough Time. Edited by Behrensmeyer AK, Damuth JD, DiMichele WA, Sues H-D, Potts R, Wing SL. Chicago: The University of Chicago Press; 1992:419-541.
  • [56]Mein P, Moissenet E, Adrover R: L’extension et l’âge des formations continentales Pliocènes du fossé de Teruel (Espagne). CR Acad Sci 1983, 296:1603-1610.
  • [57]López-Martinez N, Michaux J, Hutterer R: The skull of Stephanomys and a review of Malpaisomys relationships (Rodentia: Muridae): Taxonomic incongruente in Murids. J Mamm Evol 1988, 5:185-215.
  • [58]Renaud S, Michaux J, Schmidt D, Aguilar J, Mein P, Auffray J: Morphological evolution, ecological diversification and climate change in rodents. P Roy Soc B-Biol Sci 2005, 272:609-617.
  • [59]Misonne X: African and Indo-Australian Muridae: Evolutionary Trends. Ann Mus Royal Afr Centr 1969, 172:1-219.
  • [60]Fejfar O, Heinrich W-D, Kordos L, Maul LC: Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia). Palaeontol Electron 2011, 14(3 27A):1-38.
  • [61]García-Alix A, Minwer-Barakat R, Martín-Suárez E, Freudenthal M: Cricetidae and Gliridae (Rodentia, Mammalia) from the Miocene and Pliocene of southern Spain. Scripta Geologica 2008, 136:1-37.
  • [62]Ayarzagüena J, López-Martínez N: Estudio filogenético y comparativo de Microtus cabrerae y Microtus brecciensis. Doñana Acta Vertebrata 1976, 3:181-204.
  • [63]Garrido-García JA, Soriguer-Escofet RC: Cabrera’s Vole Microtus cabrerae Thomas, 1906 and the subgenus Iberomys during the Quaternary: Evolutionary implications and conservation. Geobios 2012, 45:437-444.
  • [64]Laplana C, Sevilla P: Documenting the biogeographic history of Microtus cabrerae through its fossil record. Mammal Rev 2013. in press
  • [65]van der Meulen A, Peláez-Campomanes P, Levin SA: Age structure, residents, and transients of Miocene rodent communities. Am Nat 2005, 165:E108-E125.
  文献评价指标  
  下载次数:28次 浏览次数:8次