期刊论文详细信息
BMC Genetics
Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep
Herman Willem Raadsma1  Peter Campbell Thomson1  Mehar Singh Khatkar1  Imtiaz Ahmed Sajid Randhawa1 
[1] ReproGen - Animal Bioscience Group, Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden NSW 2570, Australia
关键词: Sheep;    Cattle;    Geographic origin;    Double muscle;    Polledness;    Selective sweeps;    Selection signatures;   
Others  :  866606
DOI  :  10.1186/1471-2156-15-34
 received in 2013-09-17, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

Discerning the traits evolving under neutral conditions from those traits evolving rapidly because of various selection pressures is a great challenge. We propose a new method, composite selection signals (CSS), which unifies the multiple pieces of selection evidence from the rank distribution of its diverse constituent tests. The extreme CSS scores capture highly differentiated loci and underlying common variants hauling excess haplotype homozygosity in the samples of a target population.

Results

The data on high-density genotypes were analyzed for evidence of an association with either polledness or double muscling in various cohorts of cattle and sheep. In cattle, extreme CSS scores were found in the candidate regions on autosome BTA-1 and BTA-2, flanking the POLL locus and MSTN gene, for polledness and double muscling, respectively. In sheep, the regions with extreme scores were localized on autosome OAR-2 harbouring the MSTN gene for double muscling and on OAR-10 harbouring the RXFP2 gene for polledness. In comparison to the constituent tests, there was a partial agreement between the signals at the four candidate loci; however, they consistently identified additional genomic regions harbouring no known genes. Persuasively, our list of all the additional significant CSS regions contains genes that have been successfully implicated to secondary phenotypic diversity among several subpopulations in our data. For example, the method identified a strong selection signature for stature in cattle capturing selective sweeps harbouring UQCC-GDF5 and PLAG1-CHCHD7 gene regions on BTA-13 and BTA-14, respectively. Both gene pairs have been previously associated with height in humans, while PLAG1-CHCHD7 has also been reported for stature in cattle. In the additional analysis, CSS identified significant regions harbouring multiple genes for various traits under selection in European cattle including polledness, adaptation, metabolism, growth rate, stature, immunity, reproduction traits and some other candidate genes for dairy and beef production.

Conclusions

CSS successfully localized the candidate regions in validation datasets as well as identified previously known and novel regions for various traits experiencing selection pressure. Together, the results demonstrate the utility of CSS by its improved power, reduced false positives and high-resolution of selection signals as compared to individual constituent tests.

【 授权许可】

   
2014 Randhawa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727075608590.pdf 5584KB PDF download
212KB Image download
67KB Image download
30KB Image download
93KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lenstra JA, Groeneveld LF, Eding H, Kantanen J, Williams JL, Taberlet P, Nicolazzi EL, Sölkner J, Simianer H, Ciani E, Garcia JF, Bruford MW, Ajmone-Marsan P, Weigend S: Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Anim Genet 2011, 43(5):483-502.
  • [2]Nosil P, Feder JL: Genomic divergence during speciation: causes and consequences. Philos Trans R Soc Lond B Biol Sci 2012, 367(1587):332-342.
  • [3]Decker JE, Pires JC, Conant GC, McKay SD, Heaton MP, Chen K, Cooper A, Vilkki J, Seabury CM, Caetano AR, Johnson GS, Brenneman RA, Hanotte O, Eggert LS, Wiener P, Kim J-J, Kim KS, Sonstegard TS, Tassell CPV, Neibergs HL, McEwan JC, Brauning R, Coutinho LL, Babar ME, Wilson GA, McClure MC, Rolf MM, Kim J, Schnabel RD, Taylor JF: Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc Natl Acad Sci 2009, 106(44):18644-18649.
  • [4]Beja-Pereira A, Luikart G, England PR, Bradley DG, Jann OC, Bertorelle G, Chamberlain AT, Nunes TP, Metodiev S, Ferrand N, Erhardt G: Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nat Genet 2003, 35(4):311-313.
  • [5]Bruford MW, Bradley DG, Luikart G: DNA markers reveal the complexity of livestock domestication. Nat Rev Genet 2003, 4:900-910.
  • [6]Pritchard JK, Pickrell JK, Coop G: The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 2010, 20(4):R208-R215.
  • [7]Beaumont MA, Balding DJ: Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 2004, 13(4):969-980.
  • [8]Innan H, Kim Y: Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations. Genetics 2008, 179(3):1713-1720.
  • [9]Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S: The Globaldiv Consortium: Genetic diversity in farm animals – a review. Anim Genet 2010, 41(s1):6-31.
  • [10]Gautier M, Laloë D, Moazami-Goudarzi K: Insights into the genetic history of French cattle from dense SNP data on 47 Worldwide breeds. PLoS One 2010, 5(9):e13038.
  • [11]Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B: The International Sheep Genomics Consortium: Genome-wide analysis of the World’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol 2012, 10(2):e1001258.
  • [12]Barendse W, Harrison BE, Bunch RJ, Thomas MB, Turner LB: Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits. BMC Genomics 2009, 10:178. BioMed Central Full Text
  • [13]Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S, Foulley J-L, Gautier M: The genome response to artificial selection: a case study in dairy cattle. PLoS One 2009, 4(8):e6595.
  • [14]Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H: A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet 2010, 41:377-389.
  • [15]Stella A, Ajmone-Marsan P, Lazzari B, Boettcher P: Identification of selection signatures in cattle breeds selected for dairy production. Genetics 2010, 185:1451-1461.
  • [16]Utsunomiya YT, Pérez O’Brien AM, Sonstegard TS, Van Tassell CP, do Carmo AS, Mészáros G, Sölkner J, Garcia JF: Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods. PLoS One 2013, 8(5):e64280.
  • [17]Ramey H, Decker J, McKay S, Rolf M, Schnabel R, Taylor J: Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics 2013, 14(1):382. BioMed Central Full Text
  • [18]Pintus E, Sorbolini S, Albera A, Gaspa G, Dimauro C, Steri R, Marras G, Macciotta NPP: Use of locally weighted scatterplot smoothing (LOWESS) regression to study selection signatures in Piedmontese and Italian Brown cattle breeds. Anim Genet 2013. Epub ahead of print
  • [19]Fortes MRS, Kemper K, Sasazaki S, Reverter A, Pryce JE, Barendse W, Bunch R, McCulloch R, Harrison B, Bolormaa S, Zhang YD, Hawken RJ, Goddard ME, Lehnert SA: Evidence for pleiotropism and recent selection in the PLAG1 region in Australian Beef cattle. Anim Genet 2013, 44(6):636-647.
  • [20]Druet T, Pérez-Pardal L, Charlier C, Gautier M: Identification of large selective sweeps associated with major genes in cattle. Anim Genet 2013, 44(6):758-762.
  • [21]Boitard S, Rocha D: Detection of signatures of selective sweeps in the Blonde d’Aquitaine cattle breed. Anim Genet 2013, 44(5):579-583.
  • [22]Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES: The International HapMap Consortium: Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449:913-918.
  • [23]Grossman SR, Shylakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, Hostetter E, Angelino E, Garber M, Zuk O, Lander ES, Schaffner SF, Sabeti PC: A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 2010, 327:883-886.
  • [24]Oleksyk TK, Smith MW, O’Brien SJ: Genome-wide scans for footprints of natural selection. Philos Trans R Soc Lond B Biol Sci 2010, 365:185-205.
  • [25]Hohenlohe PA, Phillips PC, Cresko WA: Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci 2010, 171(9):1059-1071.
  • [26]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38(6):1358-1370.
  • [27]Weir BS, Hill WG: Estimating F-statistics. Annu Rev Genet 2002, 36:721-750.
  • [28]Hayes BJ, Chamberlain AJ, Maceachern S, Savin K, McPartlan H, MacLeod I, Sethuraman L, Goddard ME: A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Anim Genet 2009, 40:176-184.
  • [29]Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshule D, Cooper R, Kwiatkowski D, Ward R, Lander ES: Detecting recent positive selection in the human genome from haplotype structure. Nature 2002, 419(6909):832-837.
  • [30]Tang K, Thornton K, Stoneking M: A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol 2007, 5(7):e171.
  • [31]Lin K, Li H, Schlotterer C, Futschik A: Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics 2010, 187:229-244.
  • [32]Qanbari S, Gianola D, Hayes B, Schenkel F, Miller S, Moore S, Thaller G, Simianer H: Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics 2011, 12(1):318. BioMed Central Full Text
  • [33]Pavlidis P, Jensen JD, Stephan W: Searching for footprints of positive selection in whole-genome SNP data from non-equilibrium populations. Genetics 2010, 185:907-922.
  • [34]Schwarzenbacher H, Dolezal M, Flisikowski K, Seefried F, Wurmser C, Schlotterer C, Fries R: Combining evidence of selection with association analysis increases power to detect regions influencing complex traits in dairy cattle. BMC Genomics 2012, 13(1):48. BioMed Central Full Text
  • [35]Ayodo G, Price AL, Keinan A, Ajwang A, Otieno MF, Orago ASS, Patterson N, Reich D: Combining evidence of natural selection with association analysis increases power to detect malaria-resistance variants. Am J Hum Genet 2007, 81(2):234-242.
  • [36]Stouffer SA, Suchman EH, De Vinney LC, Star SA, Williams RM Jr: The American Soldier: Adjustment during Army Life, Volume 1. Princeton University Press: Princeton; 1949.
  • [37]Joost S, Negrini R, Milanesi E, Pellecchia M, Marsan PA, Econogene C: Detecting footprints of selection in Ovis aries by a spatial analysis approach. Ital J Anim Sci 2007, 6:171-173.
  • [38]Gautier M, Naves M: Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Mol Ecol 2011, 20(15):3128-3143.
  • [39]Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, Green RD, Hamernik DL, Kappes SM, Lien S, Matukumalli LK, McEwan JC, Nazareth LV, Schnabel RD, Weinstock GM, Wheeler DA, Ajmone-Marsan P, Boettcher PJ, Caetano AR, Garcia JF, Hanotte O, Mariani P, Skow LC, Sonstegard TS, Williams JL, Diallo B, Hailemariam L, Martinez ML, Morris CA, Silva LO, et al.: Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 2009, 324:528-532.
  • [40]Zhang L, Mousel MR, Wu X, Michal JJ, Zhou X, Ding B, Dodson MV, El-Halawany NK, Lewis GS, Jiang Z: Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep. PLoS One 2013, 8(6):e65942.
  • [41]Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds K, McEwan J: Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 2012, 13(1):10.
  • [42]Flori L, Gonzatti MI, Thevenon S, Chantal I, Pinto J, Berthier D, Aso PM, Gautier M: A quasi-exclusive European ancestry in the Senepol tropical cattle breed highlights the importance of the slick locus in tropical adaptation. PLoS One 2012, 7(5):e36133.
  • [43]Pickrell J, Coop G, Novembre J, Kudaravalli S, Li J, Absher D, Srinivasan B, Barsh G, Myers R, Feldman M, Pritchard J: Signals of recent positive selection in a worldwide sample of human populations. Genome Res 2009, 19:826-837.
  • [44]Hayes B, Bowman P, Chamberlain A, Verbyla K, Goddard M: Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol 2009, 41(1):51. BioMed Central Full Text
  • [45]Pryce JE, Gredler B, Bolormaa S, Bowman PJ, Egger-Danner C, Fuerst C, Emmerling R, Sölkner J, Goddard ME, Hayes BJ: Genomic selection using a multi-breed, across-country reference population. J Dairy Sci 2011, 94(5):2625-2630.
  • [46]Purfield D, Berry D, McParland S, Bradley D: Runs of homozygosity and population history in cattle. BMC Genet 2012, 13(1):70.
  • [47]Seichter D, Russ I, Rothammer S, Eder J, Förster M, Medugorac I: SNP-based association mapping of the polled gene in divergent cattle breeds. Anim Genet 2012, 43(5):595-598.
  • [48]Kemper KE, Goddard ME: Understanding and predicting complex traits: knowledge from cattle. Hum Mol Genet 2012, 21(R1):R45-R51.
  • [49]Gautier M, Flori L, Riebler A, Jaffrezic F, Laloe D, Gut I, Moazami-Goudarzi K, Foulley J-L: A whole genome Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics 2009, 10(1):550. BioMed Central Full Text
  • [50]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [51]Browning SR, Browning BL: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 2007, 81(5):1084-1097.
  • [52]Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TPL, Sonstegard TS, Tassell CPV: Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 2009, 4(4):e5350.
  • [53]Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, Bouet S, Rothammer S, Wahlberg P, Esquerré D, Hoze C, Boussaha M, Weiss B, Thépot D, Fouilloux M-N, Rossignol M-N, van Marle-Köster E, Hreiðarsdóttir GE, Barbey S, Dozias D, Cobo E, Reversé P, Catros O, Marchand J-L, Soulas P, Roy P, et al.: Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS One 2013, 8(5):e63512.
  • [54]Marchitelli C, Savarese M, Crisà A, Nardone A, Marsan P, Valentini A: Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm Genome 2003, 14(6):392-395.
  • [55]Georges M: When less means more: impact of myostatin in animal breeding. Immun Endocrinol Metab Agents Med Chem 2010, 10(4):240-248.
  • [56]Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J: Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity 2010, 104(2):196-205.
  • [57]Dominik S, Henshall JM, Hayes BJ: A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep. Anim Genet 2011, 43(4):468-470.
  • [58]Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen J-M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M: A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006, 38(7):813-818.
  • [59]Browning SR, Weir BS: Population structure with localized haplotype clusters. Genetics 2010, 185:1337-1344.
  • [60]Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4(3):e72.
  • [61]Li J, Paramita P, Choi KP, Karuturi RKM: ConReg-R: Extrapolative recalibration of the empirical distribution of p-values to improve false discovery rate estimates. Biol Direct 2011, 6(1):27. BioMed Central Full Text
  • [62]Strimmer K: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008, 24(12):1461-1462.
  • [63]Zhang H, Meltzer P, Davis S: RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 2013, 14(1):244. BioMed Central Full Text
  • [64]Noyes H, Brass A, Obara I, Anderson S, Archibald AL, Bradley DG, Fisher P, Freeman A, Gibson J, Gicheru M, Hall L, Hanotte O, Hulme H, McKeever D, Murray C, Oh SJ, Tate C, Smith K, Tapio M, Wambugu J, Williams DJ, Agaba M, Kemp SJ: Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection. Proc Natl Acad Sci 2011, 108(22):9304-9309.
  • [65]Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen W-M, Bonnycastle LL, Shen H, Timpson N, Lettre G, Usala G, Chines PS, Stringham HM, Scott LJ, Dei M, Lai S, Albai G, Crisponi L, Naitza S, Doheny KF, Pugh EW, Ben-Shlomo Y, Ebrahim S, Lawlor DA, Bergman RN, Watanabe RM, Uda M, Tuomilehto J, Coresh J, Hirschhorn JN, Shuldiner AR, et al.: Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 2008, 40(2):198-203.
  • [66]Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JRB, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CNA, Morris AD, Ouwehand WH, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM: Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 2008, 40(5):575-583.
  • [67]Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, Eyheramendy S, Voight BF, Butler JL, Guiducci C, Illig T, Hackett R, Heid IM, Jacobs KB, Lyssenko V, Uda M, Boehnke M, Chanock SJ, Groop LC, Hu FB, Isomaa B, Kraft P, Peltonen L, Salomaa V, Schlessinger D, Hunter DJ, Hayes RB, Abecasis GR, Wichmann HE, Mohlke KL, et al.: Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 2008, 40(5):584-591.
  • [68]Liu Y, Zan L, Zhao S, Huang H, Li Y, Tang Z, Yang S, Li K: Molecular cloning, expression and characterization of bovine UQCC and its association with body measurement traits. Mol Cells 2010, 30(5):393-401.
  • [69]Karim L, Takeda H, Lin L, Druet T, Arias JAC, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W: Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 2011, 43(5):405-413.
  • [70]Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, Sugimoto Y, Takasuga A: Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet 2012, 13(1):40.
  • [71]Chan EKF, Nagaraj SH, Reverter A: The evolution of tropical adaptation: comparing taurine and zebu cattle. Anim Genet 2010, 41(5):467-477.
  • [72]Liu L, Harris B, Keehan M, Zhang Y: Genome scan of pigmentation traits in Friesian-Jersey crossbred cattle. J Genet Genomics 2009, 36(11):661-666.
  • [73]Brenig B, Beck J, Floren C, Bornemann-Kolatzki K, Wiedemann I, Hennecke S, Swalve H, Schütz E: Molecular genetics of coat colour variations in White Galloway and White Park cattle. Anim Genet 2013, 44(4):450-453.
  • [74]Norris BJ, Whan VA: A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res 2008, 18(8):1282-1293.
  • [75]Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, Bouwmeester T, Schirle M, Bueno-Lozano M, Ramos Fuentes FJ, Itin PH, Boudin E, de Freitas F, Jennes K, Brannetti B, Charara N, Ebersbach H, Geisse S, Lu CX, Bauer A, Van Hul W, Kneissel M: Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 2011, 286(22):19489-19500.
  • [76]Bidinost F, Roldan DL, Dodero AM, Cano EM, Taddeo HR, Mueller JP, Poli MA: Wool quantitative trait loci in Merino sheep. Small Ruminant Res 2008, 74(1–3):113-118.
  • [77]Ponz R, Moreno C, Allain D, Elsen JM, Lantier F, Lantier I, Brunel JC, Perez-Enciso M: Assessment of genetic variation explained by markers for wool traits in sheep via a segment mapping approach. Mamm Genome 2001, 12(7):569-572.
  • [78]Simonis-Bik AM, Nijpels G, van Haeften TW, Houwing-Duistermaat JJ, Boomsma DI, Reiling E, van Hove EC, Diamant M, Kramer MHH, Heine RJ, Maassen JA, Slagboom PE, Willemsen G, Dekker JM, Eekhoff EM, de Geus EJ, 't Hart LM: Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic β-cell function. Diabetes 2010, 59(1):293-301.
  • [79]Ho M, Yoganathan P, Chu K, Karunakaran S, Johnson J, Clee S: Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets. BMC Genet 2013, 14(1):10.
  • [80]Naslund J, Fikse W, Pielberg G, Lunden A: Frequency and effect of the bovine acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle. J Dairy Sci 2008, 91(5):2127-2134.
  • [81]Anton I, Kovacs K, Fesus L, Varhegyi J, Lehel L, Hajda Z, Polgar J, Szabo F, Zsolnai A: Effect of DGAT1 and TG gene polymorphisms on intramuscular fat and on milk production traits in different cattle breeds in Hungary. Acta Vet Hung 2008, 56(2):181-186.
  • [82]Schennink A, Stoop W, Visker M, Heck J, Bovenhuis H, van der Poel J, van Valenberg H, van Arendonk J: DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Anim Genet 2007, 38(5):467-473.
  • [83]Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R: Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 2002, 12:222-231.
  • [84]Avilés C, Polvillo O, Peña F, Juárez M, Martínez AL, Molina A: Associations between DGAT1, FABP4, LEP, RORC and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef. J Anim Sci 2013, 91(10):4571-4577.
  • [85]Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Cavanagh JAL, Barris W, Schnabel RD, Taylor JF, Raadsma HW: Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics 2008, 9:187. BioMed Central Full Text
  • [86]Kim Y, Nielsen R: Linkage disequilibrium as a signature of selective sweeps. Genetics 2004, 167:1513-1524.
  • [87]Nielsen R, Signorovitch J: Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor Popul Biol 2003, 63(3):245-255.
  • [88]Nielsen R: Population genetic analysis of ascertained SNP data. Hum Genomics 2004, 1(3):218-224. BioMed Central Full Text
  • [89]Achaz G: Testing for neutrality in samples with sequencing errors. Genetics 2008, 179:1409-1424.
  • [90]Heslot N, Rutkoski J, Poland J, Jannink J-L, Sorrells ME: Impact of Marker Ascertainment Bias on Genomic Selection Accuracy and Estimates of Genetic Diversity. PLoS One 2013, 8(9):e74612.
  • [91]Neto LRP, Barendse W: Effect of SNP origin on analyses of genetic diversity in cattle. Anim Reprod Sci 2010, 50(8):792-800.
  • [92]Hanotte O, Tawah CL, Bradley DG, Okomo M, Verjee Y, Ochieng J, Rege JEO: Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. Mol Ecol 2000, 9(4):387-396.
  • [93]Turchin MC, Chiang CWK, Palmer CD, Sankararaman S, Reich D, Hirschhorn JN: Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat Genet 2012, 44(9):1015-1019.
  • [94]Porto-Neto L, Sonstegard T, Liu G, Bickhart D, Da Silva M, Machado M, Utsunomiya Y, Garcia J, Gondro C, Van Tassell C: Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping. BMC Genomics 2013, 14(1):876. BioMed Central Full Text
  • [95]Mortlock DP, Pregizer S: Identifying Functional Annotation for Noncoding Genomic Sequences. In: Current Protocols in Human Genetics. John Wiley & Sons, Inc.; 2012.
  • [96]Zeng K, Shi S, Wu C-I: Compound tests for the detection of hitchhiking under positive selection. Mol Biol Evol 2007, 24(8):1898-1908.
  • [97]Hussin J, Nadeau P, Lefebvre J-F, Labuda D: Haplotype allelic classes for detecting ongoing positive selection. BMC Bioinformatics 2010, 11(1):65. BioMed Central Full Text
  • [98]Zeng K, Mano S, Shi S, Wu C-I: Comparisons of site- and haplotype-frequency methods for detecting positive selection. Mol Biol Evol 2007, 24(7):1562-1574.
  • [99]Khatkar M, Moser G, Hayes B, Raadsma H: Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 2012, 13(1):538. BioMed Central Full Text
  • [100]Rice DP, Townsend JP: A test for selection employing quantitative trait locus and mutation accumulation data. Genetics 2012, 190:1533-1545.
  • [101]Decker J, Vasco D, McKay S, McClure M, Rolf M, Kim J, Northcutt S, Bauck S, Woodward B, Schnabel R, Taylor J: A novel analytical method, Birth Date Selection Mapping, detects response of the Angus (Bos taurus) genome to selection on complex traits. BMC Genomics 2012, 13(1):606. BioMed Central Full Text
  • [102]Alvarez-Ponce D, Aguadé M, Rozas J: Comparative genomics of the vertebrate insulin/TOR signal transduction pathway: a network-level analysis of selective pressures. Genome Biol Evol 2011, 3:87-101.
  • [103]Fu J, Festen EAM, Wijmenga C: Multi-ethnic studies in complex traits. Hum Mol Genet 2011, 20(R2):R206-R213.
  文献评价指标  
  下载次数:22次 浏览次数:10次