期刊论文详细信息
BMC Evolutionary Biology
The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications
Dan Larhammar2  Görel Sundström1  Xesús M Abalo2  Jenny Widmark2  Daniel Ocampo Daza2  David Lagman2 
[1] Present address: Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-75123 Uppsala, Sweden;Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
关键词: Voltage-gated calcium channels;    G-protein alpha transducing subunits;    Vasopressin receptors;    Oxytocin receptors;    Opsin evolution;    Chromosome rearrangements;    Whole genome duplications;    Visual opsins;   
Others  :  1085362
DOI  :  10.1186/1471-2148-13-238
 received in 2013-06-27, accepted in 2013-10-29,  发布年份 2013
PDF
【 摘 要 】

Background

Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L).

Results

Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R.

Conclusions

We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.

【 授权许可】

   
2013 Lagman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172710336.pdf 2674KB PDF download
Figure 6. 56KB Image download
Figure 5. 83KB Image download
Figure 4. 72KB Image download
Figure 3. 160KB Image download
Figure 2. 94KB Image download
Figure 1. 158KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G: Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol Biol Evol 2012, 29:3451-3458.
  • [2]Davies WIL, Collin SP, Hunt DM: Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 2012, 21:3121-3158.
  • [3]Davies WL, Carvalho LS, Tay B-H, Brenner S, Hunt DM, Venkatesh B: Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Res 2009, 19:415-426.
  • [4]Collin SP: Evolution and ecology of retinal photoreception in early vertebrates. Brain Behav Evol 2010, 75:174-185.
  • [5]Rennison DJ, Owens GL, Taylor JS: Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 2012, 62:986-1008.
  • [6]Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T: Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci USA 1992, 89:5932-5936.
  • [7]Davies WL, Cowing JA, Carvalho LS, Potter IC, Trezise AEO, Hunt DM, Collin SP: Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. FASEB J 2007, 21:2713-2724.
  • [8]Larhammar D, Lundin L-G, Hallböök F: The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 2002, 12:1910-1920.
  • [9]Dehal P, Boore JL: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005, 3:e314.
  • [10]Nakatani Y, Takeda H, Kohara Y, Morishita S: Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 2007, 17:1254-1265.
  • [11]Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu J-K, Benito-Gutiérrez E, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, et al.: The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453:1064-1071.
  • [12]Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, et al.: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004, 431:946-957.
  • [13]Sundström G, Dreborg S, Larhammar D: Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One 2010, 5:e10512.
  • [14]Dreborg S, Sundström G, Larsson TA, Larhammar D: Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA 2008, 105:15487-15492.
  • [15]Sundström G, Larsson TA, Brenner S, Venkatesh B, Larhammar D: Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. Gen Comp Endocrinol 2008, 155:705-716.
  • [16]Larsson TA, Tay B-H, Sundström G, Fredriksson R, Brenner S, Larhammar D, Venkatesh B: Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation. Genomics 2009, 93:254-260.
  • [17]Larsson TA, Olsson F, Sundström G, Lundin L-G, Brenner S, Venkatesh B, Larhammar D: Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions. BMC Evol Biol 2008, 8:184. BioMed Central Full Text
  • [18]Widmark J, Sundström G: Ocampo Daza D, Larhammar D: Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes. Mol Biol Evol 2011, 28:859-871.
  • [19]Ocampo Daza D, Sundström G, Bergqvist CA, Duan C, Larhammar D: Evolution of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology 2011, 152:2278-2289.
  • [20]Hultqvist G, Ocampo Daza D, Larhammar D, Kilimann MW: Evolution of the vertebrate paralemmin gene family: ancient origin of gene duplicates suggests distinct functions. PLoS One 2012, 7:e41850.
  • [21]Lagman D, Sundström G, Ocampo Daza D, Abalo XM, Larhammar D: Expansion of Transducin Subunit Gene Families in Early Vertebrate Tetraploidizations. Genomics 2012, 1-9.
  • [22]Larhammar D, Nordström K, Larsson TA: Evolution of vertebrate rod and cone phototransduction genes. Phil Trans Roy Soc Lond B Biol Sci 2009, 364:2867-2880.
  • [23]Nordström K, Larsson TA, Larhammar D: Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics 2004, 83:852-872.
  • [24]Kawamura S, Blow NS, Yokoyama S: Genetic analyses of visual pigments of the pigeon (Columba livia). Genetics 1999, 153:1839-1850.
  • [25]Chinen A, Hamaoka T, Yamada Y, Kawamura S: Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 2003, 163:663-675.
  • [26]Yokoyama R, Yokoyama S: Molecular characterization of a blue visual pigment gene in the fish Astyanax fasciatus. FEBS Lett 1993, 334:27-31.
  • [27]Oka Y, Korsching SI: Shared and unique G alpha proteins in the zebrafish versus mammalian senses of taste and smell. Chem Senses 2011, 36:357-365.
  • [28]Ohmoto M, Okada S, Nakamura S, Abe K, Matsumoto I: Mutually exclusive expression of Gαia and Gα14 reveals diversification of taste receptor cells in zebrafish. J Comp Neurol 2011, 519:1616-1629.
  • [29]Yamaguchi Y, Kaiya H, Konno N, Iwata E, Miyazato M, Uchiyama M, Bell JD, Toop T, Donald JA, Brenner S, Venkatesh B, Hyodo S: The fifth neurohypophysial hormone receptor is structurally related to the V2-type receptor but functionally similar to V1-type receptors. Gen Comp Endocrinol 2012, 178:519-528.
  • [30]Ocampo Daza D, Lewicka M, Larhammar D: The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, including two distinct V2 subtypes. Gen Comp Endocrinol 2012, 175:135-143.
  • [31]Peirson SN, Halford S, Foster RG: The evolution of irradiance detection: melanopsin and the non-visual opsins. Phil Trans Roy Soc Lond B Biol Sci 2009, 364:2849-2865.
  • [32]Davies WL, Hankins MW, Foster RG: Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 2010, 9:1444-1457.
  • [33]Sato K, Yamashita T, Ohuchi H, Shichida Y: Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. Biochemistry 2011, 50:10484-10490.
  • [34]Kusakabe T, Tsuda M: Photoreceptive systems in ascidians. Photochem Photobiol 2007, 83:248-252.
  • [35]Phylogenetic analyses of the visual opsin genes of the LWS, SWS1, SWS2, RH1 and RH2 clades. http://dx.doi.org/10.6084/m9.figshare.705157
  • [36]Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO: Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 2003, 13:R864-R865.
  • [37]Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, Ray DA, Boissinot S, Shedlock AM, Botka C, Castoe TA, Colbourne JK, Fujita MK, Moreno RG, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Lara M, Novick PA, Organ CL, Peach SE, et al.: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011, 477:587-591.
  • [38]Yokoyama S, Zhang H, Radlwimmer FB, Blow NS: Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci USA 1999, 96:6279-6284.
  • [39]Mano H, Kojima D, Fukada Y: Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain research Molecular brain research 1999, 73:110-118.
  • [40]Fitzgibbon J, Hope A, Slobodyanyuk SJ, Bellingham J, Bowmaker JK, Hunt DM: The rhodopsin-encoding gene of bony fish lacks introns. Gene 1995, 164:273-277.
  • [41]Morrow JM, Lazic S, Chang BSW: A novel rhodopsin-like gene expressed in zebrafish retina. Vis Neurosci 2011, 28:325-335.
  • [42]Phylogenetic analyses of the vertebrate oxytocin and vasopressin receptor gene family. http://dx.doi.org/10.6084/m9.figshare.707336
  • [43]Phylogenetic analyses of the vertebrate voltage-gated calcium channel L-type alpha 1 subunit gene family. http://dx.doi.org/10.6084/m9.figshare.710637
  • [44]Phylogenetic analyses of syntenic gene families in visual opsin gene-bearing chromosome regions. http://dx.doi.org/10.6084/m9.figshare.705852
  • [45]Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S-I, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, et al.: The medaka draft genome and insights into vertebrate genome evolution. Nature 2007, 447:714-719.
  • [46]Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH: Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 2011, 188:799-808.
  • [47]Bellingham J, Tarttelin EE, Foster RG, Wells DJ: Structure and evolution of the teleost extraretinal rod-like opsin (errlo) and ocular rod opsin (rho) genes is teleost rho a retrogene. J Exp Zool B Mol Dev Evol 2003, 297:1-10.
  • [48]Venkatesh B, Ning Y, Brenner S: Late changes in spliceosomal introns define clades in vertebrate evolution. Proc Natl Acad Sci USA 1999, 96:10267-10271.
  • [49]Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM: The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J Exp Biol 2007, 210(16):2829-2835.
  • [50]Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S, Okamoto N: Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett 2000, 469:39-43.
  • [51]Archer S, Hope A, Partridge JC: The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proceedings Biological sciences/The Royal Society 1995, 262:289-295.
  • [52]Tan F, Lolait SJ, Brownstein MJ, Saito N, MacLeod V, Baeyens DA, Mayeux PR, Jones SM, Cornett LE: Molecular cloning and functional characterization of a vasotocin receptor subtype that is expressed in the shell gland and brain of the domestic chicken. Biol Reprod 2000, 62:8-15.
  • [53]Ocampo Daza D, Sundström G, Bergqvist CA, Larhammar D: The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements. BMC Evol Biol 2012, 12:231. BioMed Central Full Text
  • [54]Kuraku S, Meyer A, Kuratani S: Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 2009, 26:47-59.
  • [55]Heimberg AM, Cowper-Sal-lari R, Sémon M, Donoghue PCJ, Peterson KJ: microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 2010, 107:19379-19383.
  • [56]Ota KG, Fujimoto S, Oisi Y, Kuratani S: Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2011., 2http://dx.doi.org/10.1038/ncomms1355
  • [57]Shimeld SM, Donoghue PCJ: Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 2012, 139:2091-2099.
  • [58]Jakobsson J, Ackermann F, Andersson F, Larhammar D, Löw P, Brodin L: Regulation of synaptic vesicle budding and dynamin function by an EHD ATPase. J Neurosci 2011, 31:13972-13980.
  • [59]Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, et al.: Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 2013, 45:415-421.
  • [60]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, et al.: Ensembl 2012. Nucleic Acids Res 2012, 40:D84-D90.
  • [61]Tokunaga F, Iwasa T, Miyagishi M, Kayada S: Cloning of cDNA and amino acid sequence of one of chicken cone visual pigments. Biochem Biophys Res Commun 1990, 173:1212-1217.
  • [62]Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009, 19:327-335.
  • [63]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [64]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39(2):W29-W37.
  • [65]Burge C, Karlin S: Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997, 268:78-94.
  • [66]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [67]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [68]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [69]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [70]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 2006, 55:539-552.
  • [71]Hess PN, De Moraes Russo CA: An empirical test of the midpoint rooting method. Biol J Linn Soc 2007, 92:669-674.
  • [72]Berglund A-C, Sjölund E, Ostlund G, Sonnhammer ELL: InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 2008, 36:D263-D266.
  • [73]Remm M, Storm CE, Sonnhammer EL: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 2001, 314:1041-1052.
  文献评价指标  
  下载次数:67次 浏览次数:2次