期刊论文详细信息
BMC Genomics
Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle
Louis A Sherman1  Richard D Smith4  Hugh Mitchell2  Marina Gritsenko4  Jyothi Thimmapuram3  Ketaki Bhide3  Jon Jacobs4  Galya Orr2  Ronald Taylor2  Meng Lye Markillie2  Xiaohui Zhang1  David Welkie1 
[1] Department of Biological Sciences, Purdue University, West Lafayette, IN, USA;Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA;Bioinformatics Core, Purdue University, West Lafayette, IN, USA;Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
关键词: CRISPR;    Butanol;    Proteomics;    N2 fixation;    RNA-Seq;    Cyanobacteria;    Cyanothece;   
Others  :  1121419
DOI  :  10.1186/1471-2164-15-1185
 received in 2014-08-07, accepted in 2014-12-16,  发布年份 2014
PDF
【 摘 要 】

Background

Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light–dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions.

Results

By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light–dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid.

Conclusions

This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements.

【 授权许可】

   
2014 Welkie et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150212022233415.pdf 2162KB PDF download
Figure 8. 79KB Image download
Figure 7. 76KB Image download
Figure 6. 85KB Image download
Figure 5. 162KB Image download
Figure 4. 48KB Image download
Figure 3. 59KB Image download
Figure 2. 61KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Min HT, Sherman LA: Genetic transformation and mutagenesis via single-stranded dna in the unicellular, diazotrophic cyanobacteria of the genus Cyanothece. Appl Environ Microbiol 2010, 76(22):7641-7645.
  • [2]Zhang X, Sherman DM, Sherman LA: The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity. J Bacteriol 2014, 196(4):840-849.
  • [3]Bandyopadhyay A, Elvitigala T, Welsh E, Stockel J, Liberton M, Min H, Sherman LA, Pakrasi HB: Novel metabolic attributes of the genus Cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece. Mbio 2011., 2(5) doi:10.1128/mBio.00214-11
  • [4]Bandyopadhyay A, Stockel J, Min H, Sherman LA, Pakrasi HB: High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 2010, 1:139.
  • [5]Elvitigala T, Stockel J, Ghosh BK, Pakrasi HB: Effect of continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142. BMC Genomics 2009, 10:226. BioMed Central Full Text
  • [6]Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB: Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Syst Biol 2010, 4:105.
  • [7]Stockel J, Welsh EA, Liberton M, Kunnvakkam R, Aurora R, Pakrasi HB: Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl Acad Sci U S A 2008, 105(16):6156-6161.
  • [8]Toepel J, Welsh E, Summerfield TC, Pakrasi HB, Sherman LA: Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light–dark and continuous-light growth. J Bacteriol 2008, 190(11):3904-3913.
  • [9]Min H, Sherman LA: Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 2010, 76(13):4293-4301.
  • [10]Aryal UK, Stockel J, Krovvidi RK, Gritsenko MA, Monroe ME, Moore RJ, Koppenaal DW, Smith RD, Pakrasi HB, Jacobs JM: Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light–dark diurnal cycles. BMC Syst Biol 2011, 5:194. BioMed Central Full Text
  • [11]Aryal UK, Stockel J, Welsh EA, Gritsenko MA, Nicora CD, Koppenaal DW, Smith RD, Pakrasi HB, Jacobs JM: Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light. J Proteome Res 2012, 11(2):609-619.
  • [12]Stockel J, Jacobs JM, Elvitigala TR, Liberton M, Welsh EA, Polpitiya AD, Gritsenko MA, Nicora CD, Koppenaal DW, Smith RD, et al.: Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142. PLoS ONE 2011, 6(2):e16680.
  • [13]Aryal UK, Callister SJ, McMahon BH, McCue LA, Brown J, Stockel J, Liberton M, Mishra S, Zhang X, Nicora CD, et al.: Proteomic screens of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece. J Proteome Res 2014., 2014doi:10.1021/pr5000889
  • [14]Aryal UK, Callister SJ, Mishra S, Zhang XH, Shutthanandan JI, Angel TE, Shukla AK, Monroe ME, Moore RJ, Koppenaal DW, et al.: Proteome analyses of strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H-2 production. Appl Environ Microbiol 2013, 79(4):1070-1077.
  • [15]Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG 2nd, Smith RD, et al.: Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. MCP 2010, 9(12):2678-2689.
  • [16]Allen MM: Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 1968, 4(1):1-4.
  • [17]Welkie DG, Sherman DM, Chrisler WB, Orr G, Sherman LA: Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822. Photosynth Res 2013, 118(1–2):25-36.
  • [18]Kogenaru S, Qing Y, Guo Y, Wang N: RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics 2012, 13:629. BioMed Central Full Text
  • [19]van Vliet AH: Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 2010, 302(1):1-7.
  • [20]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [21]Colon-Lopez M, Sherman DM, Sherman LA: Transcriptional and translational regulation of nitrogenase in light–dark- and continuous-light grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 1997, 179(13):4319-4327.
  • [22]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35(Web Server issue):W52-W57.
  • [23]Grissa I, Vergnaud G, Pourcel C: The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007, 8:172. BioMed Central Full Text
  • [24]Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW: Transcriptome and proteome dynamics of a light–dark synchronized bacterial cell cycle. PLoS ONE 2012, 7(8):e43432.
  • [25]Murray JW: Sequence variation at the oxygen-evolving centre of photosystem II: a new class of 'rogue' cyanobacterial D1 proteins. Photosynth Res 2012, 110(3):177-184.
  • [26]Summerfield TC, Toepel J, Sherman LA: Low-oxygen induction of normally cryptic psbA genes in cyanobacteria. Biochemistry 2008, 47(49):12939-12941.
  • [27]Zhang X, Sherman LA: Alternate copies of D1 are used by cyanobacteria under different environmental conditions. Photosynth Res 2012, 114(2):133-135.
  • [28]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315(5819):1709-1712.
  • [29]Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA: Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 2013, 41(15):7429-7437.
  • [30]Chylinski K, Makarova KS, Charpentier E, Koonin EV: Classification and evolution of type II CRISPR-Cas systems. Nucl Acids Res 2014., 2014doi:10.1093/nar/gku241
  • [31]Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468(7320):67-71.
  • [32]Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al.: Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011, 9(6):467-477.
  • [33]Marraffini LA, Sontheimer EJ: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322(5909):1843-1845.
  • [34]Ludwig M, Bryant DA: Transcription Profiling of the Model Cyanobacterium Synechococcus sp. Strain PCC 7002 by Next-Gen (SOLiD) Sequencing of cDNA. Front Microbiol 2011, 2:41.
  • [35]Flaherty BL, Van Nieuwerburgh F, Head SR, Golden JW: Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 2011, 12:332. BioMed Central Full Text
  • [36]Harke MJ, Gobler CJ: Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS ONE 2013, 8(7):e69834.
  • [37]Wu B, Zhang B, Feng X, Rubens JR, Huang R, Hicks LM, Pakrasi HB, Tang YJ: Alternative isoleucine synthesis pathway in cyanobacterial species. Microbiology 2010, 156(Pt 2):596-602.
  • [38]Lan EI, Liao JC: Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide (vol 13, pg 353, 2011). Metab Eng 2012, 14(1):68-69.
  • [39]Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009, 27(12):1177-1180.
  • [40]Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA: Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 2013, 41(15):7429-7437.
  • [41]Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152(5):1173-1183.
  • [42]Livesay EA, Tang K, Taylor BK, Buschbach MA, Hopkins DF, LaMarche BL, Zhao R, Shen Y, Orton DJ, Moore RJ, et al.: Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal Chem 2008, 80(1):294-302.
  • [43]Kelly RT, Page JS, Luo Q, Moore RJ, Orton DJ, Tang K, Smith RD: Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal Chem 2006, 78(22):7796-7801.
  • [44]Kim S, Gupta N, Pevzner PA: Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res 2008, 7(8):3354-3363.
  • [45]Elias JE, Gygi SP: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007, 4(3):207-214.
  • [46]Qian WJ, Liu T, Monroe ME, Strittmatter EF, Jacobs JM, Kangas LJ, Petritis K, Camp DG 2nd, Smith RD: Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J Proteome Res 2005, 4(1):53-62.
  • [47]Kim S, Gupta N, Pevzner PA: Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res 2008, 7(8):3354-3363.
  • [48]Polpitiya AD, Qian WJ, Jaitly N, Petyuk VA, Adkins JN, Camp DG 2nd, Anderson GA, Smith RD: DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 2008, 24(13):1556-1558.
  文献评价指标  
  下载次数:108次 浏览次数:15次