期刊论文详细信息
BMC Complementary and Alternative Medicine
Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus −1: an in vitro study on virally infected Vero and MRC-5 cell lines
Farid Azizi Jalilian4  Fatemeh Jahansheri3  Zamberi Sekawi3  Fatimah Abu Bakar1  Ahmed S Abdulamir5  Rand R Hafidh2 
[1] Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;Institute of Bioscience, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;Faculty of Health Sciences and Medicine, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;Department of Medical Microbiology, Faculty of Medicine,, Hamadan University of Medical Sciences (HUMS), Hamadan, Ilam, Iran;Department of Microbiology, College of Medicine, Alnahrain University, Baghdad, Iraq
关键词: Tumor necrosis factor;    Interferon;    Cytotoxicity assay;    Acyclovir;    Ribavarin;    Herpes simplex virus-1;    Respiratory syncytial virus;    Mung bean sprout;   
Others  :  1211788
DOI  :  10.1186/s12906-015-0688-2
 received in 2015-02-22, accepted in 2015-05-21,  发布年份 2015
PDF
【 摘 要 】

Background

New sources for discovering novel antiviral agents are desperately needed. The current antiviral products are both expensive and not very effective.

Methods

The antiviral activity of methanol extract of mung bean sprouts (MBS), compared to Ribavarin and Acyclovir, on respiratory syncytial virus (RSV) and Herpes Simplex virus −1 (HSV-1) was investigated using cytotoxicity, virus yield reduction, virucidal activity, and prophylactic activity assays on Vero and MRC-5 cell lines. Moreover, the level of antiviral cytokines, IFNβ, TNFα, IL-1, and IL-6 was assessed in MBS-treated, virally infected, virally infected MBS-treated, and control groups of MRC-5 cells using ELISA.

Results

MBS extract showed reduction factors (RF) 2.2 × 10 and 0.5 × 102 for RSV and HSV-1, respectively. The 2 h incubation virucidal and prophylactic selectivity indices (SI) of MBS on RSV were 14.18 and 12.82 versus Ribavarin SI of 23.39 and 21.95, respectively, and on HSV-1, SI were 18.23 and 10.9 versus Acyclovir, 22.56 and 15.04, respectively. All SI values were >10 indicating that MBS has a good direct antiviral and prophylactic activities on both RSV and HSV-1. Moreover, interestingly, MBS extract induced vigorously IFNβ, TNFα, IL-1, and IL-6 cytokines in MRC-5 infected-treated group far more than other groups (P < 0.05) and induced TNFα and IL-6 in treated group more than infected group (P < 0.05).

Conclusions

MBS extract has potent antiviral and to a lesser extent, prophylactic activities against both RSV and HSV-1, and in case of HSV-1, these activities were comparable to Acyclovir. Part of the underlying mechanism(s) of these activities is attributed to MBS potential to remarkably induce antiviral cytokines in human cells. Hence, we infer that MBS methanol extract could be used as such or as purified active component in protecting and treating RSV and HSV-1 infections. More studies are needed to pinpoint the exact active components responsible for the MBS antiviral activities.

【 授权许可】

   
2015 Hafidh et al.

【 预 览 】
附件列表
Files Size Format View
20150611013143921.pdf 649KB PDF download
Fig. 1. 24KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Tisdale M. Monitoring of viral susceptibility: new challenges with the development of influenza NA inhibitors. Rev Med Virol. 2000; 10:45-55.
  • [2]Castelo-Soccio L, Bernardin R, Stern J, Goldstein SA, Kovarik C. Successful treatment of Acyclovir-resistant herpes simplex virus with intralesional cidofovir. Arch Dermatol. 2010; 146:124-6.
  • [3]Reusser P. Herpesvirus resistance to antiviral drugs: a review of the mechanism, clinical importance and therapeutic options. J Hosp Infect. 1996; 33:235-48.
  • [4]Cox PA. Ethnopharmacology and the search for new drugs. Ciba Found Symp. 1990; 154:40-7.
  • [5]Chavez JH, Leal PC, Yunes RA, Nunes RJ, Barardi CR, Pinto AR et al.. Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Vet Microbiol. 2006; 116:53-9.
  • [6]Jassim SA, Naji MA. Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol. 2003; 95:412-27.
  • [7]Prichard MN, Turk SR, Coleman LA, Engelhardt SL, Shipman C, Drach JC. A microtiter virus yield reduction assay for the evaluation of antiviral compounds against human cytomegalovirus and herpes simplex virus. J Virol Methods. 1990; 28:101-6.
  • [8]Betancur-Galvis LA, Morales GE, Forero JE, Roldan J. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Mem Inst Oswaldo Cruz. 2002; 97:541-6.
  • [9]Harborne JB. Advances in flavonoid research since 1992. Phytochemistry. 2000; 55:481-504.
  • [10]Simonetti P, Gardana C, Pietta P. Plasma levels of caffeic acid and antioxidant status after red wine intake. J Agric Food Chem. 2001; 49:5964-8.
  • [11]Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, Jager AK et al.. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J Ethnopharmacol. 1999; 68:267-74.
  • [12]McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase. J Agric Food Chem. 2005; 53:2760-6.
  • [13]Fritz D, Venturi CR, Cargnin S, Schripsema J, Roehe PM, Montanha JA et al.. Herpes virus inhibitory substances from Hypericum connatum Lam., a plant used in southern Brazil to treat oral lesions. J Ethnopharmacol. 2007; 113:517-20.
  • [14]Vlietinck AJ, Van Hoof L, Totte J, Lasure A, Vanden Berghe D, Rwangabo PC et al.. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol. 1995; 46:31-47.
  • [15]Chiang LC, Chiang W, Chang MY, Ng LT, Lin CC. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Res. 2002; 55:53-62.
  • [16]Vonthron-Senecheau C, Weniger B, Ouattara M, Bi FT, Kamenan A, Lobstein A et al.. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J Ethnopharmacol. 2003; 87:221-5.
  • [17]Ho WS, Xue JY, Sun SS, Ooi VE, Li YL. Antiviral activity of daphnoretin isolated from Wikstroemia indica. Phytother Res. 2009;24:657-61
  • [18]Lopez BS, Yamamoto M, Utsumi K, Aratsu C, Sakagami H. A clinical pilot study of lignin–ascorbic acid combination treatment of herpes simplex virus. In Vivo. 2009; 23:1011-6.
  • [19]Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chem. 2008; 111:622-30.
  • [20]Lee K-G, Shibamoto T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem. 2000; 48:4290-3.
  • [21]Kayden HJ, Traber MG. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J Lipid Res. 1993; 34:343-58.
  • [22]Ricciarelli R, Zingg JM, Azzi A. The 80th anniversary of vitamin E: beyond its antioxidant properties. Biol Chem. 2002; 383:457-65.
  • [23]Nagibina MV, Neifakh EA, Krylov VF, Braginskii DM, Kulagina MG. [The treatment of pneumonias in influenza using antioxidants]. Ter Arkh. 1996; 68:33-5.
  • [24]Pertseva NG, Ananenko AA, Malinovskaia VV, Klembovskii AI, Burova V, Meshkova EN et al.. [The effect of reaferon and alpha-tocopherol on lipid peroxidation in experimental influenza]. Vopr Virusol. 1995; 40:59-62.
  • [25]Lee E, Choi MK, Lee YJ, Ku JL, Kim KH, Choi JS et al.. Alpha-tocopheryl succinate, in contrast to alpha-tocopherol and alpha-tocopheryl acetate, inhibits prostaglandin E2 production in human lung epithelial cells. Carcinogenesis. 2006; 27:2308-15.
  • [26]Furuya A, Uozaki M, Yamasaki H, Arakawa T, Arita M, Koyama AH. Antiviral effects of ascorbic and dehydroascorbic acids in vitro. Int J Mol Med. 2008; 22:541-5.
  • [27]White LA, Freeman CY, Forrester BD, Chappell WA. In vitro effect of ascorbic acid on infectivity of herpesviruses and paramyxoviruses. J Clin Microbiol. 1986; 24:527-31.
  • [28]Harakeh S, Jariwalla RJ, Pauling L. Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells. Proc Natl Acad Sci U S A. 1990; 87:7245-9.
  • [29]Sakagami H, Amano S, Kikuchi H, Nakamura Y, Kuroshita R, Watanabe S et al.. Antiviral, antibacterial and vitamin C-synergized radical-scavenging activity of Sasa senanensis Rehder extract. In Vivo. 2008; 22:471-6.
  • [30]Hassimotto NM, Genovese MI, Lajolo FM. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric Food Chem. 2005; 53:2928-35.
  • [31]Weisman LE. Respiratory syncytial virus (RSV) prevention and treatment: past, present, and future. Cardiovasc Hematol Agents Med Chem. 2009; 7:223-33.
  • [32]Empey KM, Peebles RS, Kolls JK. Pharmacologic advances in the treatment and prevention of respiratory syncytial virus. Clin Infect Dis. 2010; 50:1258-67.
  • [33]Faber TE, Kimpen JL, Bont LJ. Respiratory syncytial virus bronchiolitis: prevention and treatment. Expert Opin Pharmacother. 2008; 9:2451-8.
  • [34]McKee KT, Huggins JW, Trahan CJ, Mahlandt BG. Ribavirin prophylaxis and therapy for experimental argentine hemorrhagic fever. Antimicrob Agents Chemother. 1988; 32:1304-9.
  • [35]Crotty S, Cameron C, Andino R. Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J Mol Med. 2002; 80:86-95.
  • [36]Su CT, Hsu JT, Hsieh HP, Lin PH, Chen TC, Kao CL et al.. Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res. 2008; 79:62-70.
  • [37]Holzinger D, Kuhn J, Ehlert K, Groll AH. HSV-1 viremia as a potential cause of febrile neutropenia in an immunocompromised child. J Pediatr Hematol Oncol. 2010; 32:e19-21.
  • [38]Duan R, de Vries RD, van Dun JM, van Loenen FB, Osterhaus AD, Remeijer L et al.. Acyclovir susceptibility and genetic characteristics of sequential herpes simplex virus type 1 corneal isolates from patients with recurrent herpetic keratitis. J Infect Dis. 2009; 200:1402-14.
  • [39]Sodhi PK, Ratan SK. A case of chronic renal dysfunction following treatment with oral Acyclovir. Scand J Infect Dis. 2003; 35:770-2.
  • [40]Boo KH, Yang JS. Intrinsic cellular defenses against virus infection by antiviral type I interferon. Yonsei Med J. 2010; 51:9-17.
  • [41]Lundberg P, Welander PV, Edwards CK, van Rooijen N, Cantin E. Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol. 2007; 81:1451-60.
  • [42]Paludan SR, Ellermann-Eriksen S, Kruys V, Mogensen SC. Expression of TNF-alpha by herpes simplex virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-kappa B and activating transcription factor 2/Jun and translational regulation through the AU-rich region of the 3’ untranslated region. J Immunol. 2001; 167:2202-8.
  • [43]Lokensgard JR, Hu S, Sheng W, van Oijen M, Cox D, Cheeran MC et al.. Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol. 2001; 7:208-19.
  • [44]Ben Hur T, Rosenthal J, Itzik A, Weidenfeld J. Adrenocortical activation by herpes virus: involvement of IL-1 beta and central noradrenergic system. Neuroreport. 1996; 7:927-31.
  • [45]Matta H, Chaudhary PM. Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci U S A. 2004; 101:9399-404.
  • [46]LeBlanc RA, Pesnicak L, Cabral ES, Godleski M, Straus SE. Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice. J Virol. 1999; 73:8145-51.
  • [47]Wickham S, Ash J, Lane TE, Carr DJ. Consequences of CXCL10 and IL-6 induction by the murine IFN-alpha1 transgene in ocular herpes simplex virus type 1 infection. Immunol Res. 2004; 30:191-200.
  • [48]Obolonczyk L, Siekierska-Hellmann M, Sworczak K. [Side effects during interferon-alpha therapy of hepatitis C with special consideration of thyroid dysfunction]. Postepy Hig Med Dosw (Online). 2008; 62:309-21.
  • [49]Sleijfer S, Bannink M, Van Gool AR, Kruit WH, Stoter G. Side effects of interferon-alpha therapy. Pharm World Sci. 2005; 27:423-31.
  • [50]La S, Kim E, Kwon B. In vivo ligation of glucocorticoid-induced TNF receptor enhances the T-cell immunity to herpes simplex virus type 1. Exp Mol Med. 2005; 37:193-8.
  • [51]Morel Y, de Colella JM S, Harrop J, Deen KC, Holmes SD, Wattam TA et al.. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol. 2000; 165:4397-404.
  • [52]Jacquemin G, Shirley S, Micheau O. Combining naturally occurring polyphenols with TNF-related apoptosis-inducing ligand: a promising approach to kill resistant cancer cells? Cell Mol Life Sci. 2010;67:3115–30.
  • [53]Antoni C, Braun J. Side effects of anti-TNF therapy: current knowledge. Clin Exp Rheumatol. 2002; 20:S152-7.
  • [54]Wei G, Zhang M, Mei Y, Dong J. Expression of cytokines IL-2, IL-10 and TNF-alpha in mice with herpes simplex viral encephalitis. J Huazhong Univ Sci Technolog Med Sci. 2006; 26:308-10.
  • [55]Ruby J, Bluethmann H, Peschon JJ. Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors. J Exp Med. 1997; 186:1591-6.
  • [56]Bartee E, Mohamed MR, Lopez MC, Baker HV, McFadden G. The addition of tumor necrosis factor plus beta interferon induces a novel synergistic antiviral state against poxviruses in primary human fibroblasts. J Virol. 2009; 83:498-511.
  • [57]Fitzgerald KA. Integr-ating IL-1 alpha in antiviral host defenses. Immunity. 2009; 31:7-9.
  • [58]Schijns VE, Claassen IJ, Vermeulen AA, Horzinek MC, Osterhaus AD. Modulation of antiviral immune responses by exogenous cytokines: effects of tumour necrosis factor-alpha, interleukin-1 alpha, interleukin-2 and interferon-gamma on the immunogenicity of an inactivated rabies vaccine. J Gen Virol. 1994; 75:55-63.
  • [59]Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, et al. Interleukin-1 Family Cytokines as Mucosal Vaccine Adjuvants for Induction of Protective Immunity against Influenza Virus. J Virol. 2010;84:12703–12.
  • [60]Thompson AJ, Colledge D, Rodgers S, Wilson R, Revill P, Desmond P et al.. Stimulation of the interleukin-1 receptor and Toll-like receptor 2 inhibits hepatitis B virus replication in hepatoma cell lines in vitro. Antivir Ther. 2009; 14:797-808.
  • [61]Clarke P, Debiasi RL, Meintzer SM, Robinson BA, Tyler KL. Inhibition of NF-kappa B activity and cFLIP expression contribute to viral-induced apoptosis. Apoptosis. 2005; 10:513-24.
  • [62]Unterstab G, Ludwig S, Anton A, Planz O, Dauber B, Krappmann D et al.. Viral targeting of the interferon-{beta}-inducing Traf family member-associated NF-{kappa}B activator (TANK)-binding kinase-1. Proc Natl Acad Sci U S A. 2005; 102:13640-5.
  • [63]Stratil P, Klejdus B, Kuban V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables–evaluation of spectrophotometric methods. J Agric Food Chem. 2006; 54:607-16.
  • [64]Piazza GA, Rahm AL, Krutzsch M, Sperl G, Paranka NS, Gross PH et al.. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 1995; 55:3110-6.
  • [65]Cann AJ. Virus culture - a practical approach. 1st ed. Oxford University Press, USA; 1999.
  • [66]Roner MR, Joklik WK. Reovirus reverse genetics: incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci U S A. 2001; 98:8036-41.
  • [67]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65:55-63.
  • [68]Wyde PR, Ambrose MW, Meyerson LR, Gilbert BE. The antiviral activity of SP-303, a natural polyphenolic polymer, against respiratory syncytial and parainfluenza type 3 viruses in cotton rats. Antiviral Res. 1993; 20:145-54.
  • [69]Betancur-Galvis L, Zuluaga C, Arno M, Gonzalez MA, Zaragoza RJ. Structure-activity relationship of in vitro antiviral and cytotoxic activity of semisynthetic analogues of scopadulane diterpenes. J Nat Prod. 2001; 64:1318-21.
  • [70]Suzutani T, Ogasawara M, Yoshida I, Azuma M, Knox YM. Anti-herpesvirus activity of an extract of Ribes nigrum L. Phytother Res. 2003; 17:609-13.
  • [71]Behbahani M. Anti-viral activity of the methanolic leaf extract of an Iranian medicinal plant “Hyssopus officinalis” against herpes simplex virus. JMPR. 2009; 3:1118-25.
  • [72]Li Y, Leung KT, Yao F, Ooi LS, Ooi VE. Antiviral flavans from the leaves of Pithecellobium clypearia. J Nat Prod. 2006; 69:833-5.
  • [73]Wang H, Ooi EV, Ang PO. Antiviral activities of extracts from Hong Kong seaweeds. J Zhejiang Univ Sci B. 2008; 9:969-76.
  • [74]Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol. 2005; 32:811-6.
  • [75]Cheng PW, Chiang LC, Yen MH, Lin CC. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem Toxicol. 2007; 45:24-31.
  • [76]Wang KC, Chang JS, Chiang LC, Lin CC. 4-Methoxycinnamaldehyde inhibited human respiratory syncytial virus in a human larynx carcinoma cell line. Phytomedicine. 2009; 16:882-6.
  • [77]Roner MR, Sprayberry J, Spinks M, Dhanji S. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). J Gen Virol. 2007; 88:275-85.
  • [78]Li Y, Jiang R, Ooi LS, But PP, Ooi VE. Antiviral triterpenoids from the medicinal plant Schefflera heptaphylla. Phytother Res. 2007; 21:466-70.
  • [79]Rajbhandari M, Wegner U, Julich M, Schopke T, Mentel R. Screening of Nepalese medicinal plants for antiviral activity. J Ethnopharmacol. 2001; 74:251-5.
  • [80]Kang JX, Liu J, Wang J, He C, Li FP. The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-beta and TNF-alpha in human breast cancer cells. Carcinogenesis. 2005; 26:1934-9.
  文献评价指标  
  下载次数:9次 浏览次数:26次