期刊论文详细信息
BMC Evolutionary Biology
Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)
Bernard Henrissat3  Harry Brumer2  Yang Wang1  Pedro M Coutinho3  Henrik Aspeborg1 
[1] Division of Glycoscience, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden;Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver V6T 1Z4, Canada;Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR 7257, 163 Avenue de Luminy, Marseille 13288, France
关键词: Subfamily classification;    Phylogenetic analysis;    Glycoside hydrolase family 5;    Glycogenomics;    Functional prediction;    Enzyme evolution;    Protein evolution;   
Others  :  1140283
DOI  :  10.1186/1471-2148-12-186
 received in 2012-05-22, accepted in 2012-09-13,  发布年份 2012
PDF
【 摘 要 】

Background

The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5.

Results

About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions.

Conclusion

Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database athttp://www.cazy.org/GH5.html webcite.

【 授权许可】

   
2012 Aspeborg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324183515782.pdf 778KB PDF download
Figure 2. 103KB Image download
Figure 1. 133KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Varki A: Essentials of glycobiology. 2nd edition. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2009.
  • [2]Lichtenthaler FW: Carbohydrates as renewable raw materials: a major challenge of green chemistry. In Methods and reagents for green chemistry: an introduction. Edited by Tundo P, Perosa A, Zecchini F. Hoboken, NJ: J. Wiley; 2007:23-63.
  • [3]Laine RA: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05x10(12) structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 1994, 4:759-767.
  • [4]Sharon N: The conquest of the last frontier of molecular and cell biology. Foreword Biochimie 2001, 83:555-555.
  • [5]Anonymous: 10 Emerging Technologies That Will Change the World. Technology Review 2003, 33-51.
  • [6]Davies GJ, Gloster TM, Henrissat B: Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol 2005, 15:637-645.
  • [7]Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). http://www.chem.qmul.ac.uk/iubmb/enzyme/ webcite
  • [8]Henrissat B: A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem J 1991, 280:309-316.
  • [9]Davies GJ, Sinnott ML: Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochem J 2008, 1-5. (online only)
  • [10]Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP: Cellulase families revealed by hydrophobic cluster-analysis. Gene 1989, 81:83-95.
  • [11]The Carbohydrate-Active enZYme (CAZy) database. http://www.cazy.org webcite
  • [12]Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX: Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 2009, 107:245-256.
  • [13]Elifantz H, Waidner LA, Michelou VK, Cottrell MT, Kirchman DL: Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. FEMS Microbiol Ecol 2008, 63:316-327.
  • [14]Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo SJ, Clark DS, Chen F, Zhang T, et al.: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331:463-467.
  • [15]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37:D233-D238.
  • [16]Béguin P: Molecular biology of cellulose degradation. Annu Rev Microbiol 1990, 44:219-248.
  • [17]Lo Leggio L, Parry NJ, VanBeeumen J, Claeyssens M, Bhat MK, Pickersgill RW: Crystallization and preliminary X-ray analysis of the major endoglucanase from Thermoascus aurantiacus. Acta Crystallogr D Biol Crystallogr 1997, 53:599-604.
  • [18]Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, Winterhalter K, Piontek K: High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure Fold Des 1998, 6:1433-1444.
  • [19]Lo Leggio L, Larsen S: The 1.62 angstrom structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett 2002, 523:103-108.
  • [20]Larsson AM, Anderson L, Xu BZ, Munoz IG, Uson I, Janson JC, Stalbrand H, Stahlberg J: Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. J Mol Biol 2006, 357:1500-1510.
  • [21]Costanzo S, Ospina-Giraldo MD, Deahl KL, Baker CJ, Jones RW: Alternate intron processing of family 5 endoglucanase transcripts from the genus Phytophthora. Curr Genet 2007, 52:115-123.
  • [22]Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Cairns MK, Cairns JRK: A stress-induced rice (Oryza sativa L.) beta-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochem J 2007, 408:241-249.
  • [23]St John FJ, Gonzalez JM, Pozharski E: Consolidation of glycosyl hydrolase family 30: A dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 2010, 584:4435-4441.
  • [24]Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B: Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 2006, 19:555-562.
  • [25]Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B: A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 2010, 432:437-444.
  • [26]Hancock SM, Rich JR, Caines MEC, Strynadka NCJ, Withers SG: Designer enzymes for glycosphingolipid synthesis by directed evolution. Nat Chem Biol 2009, 5:508-514.
  • [27]Danchin EGJ, Rosso MN, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, Abad P: Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 2010, 107:17651-17656.
  • [28]Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee S-J, Yeats TH, Egan AN, Doyle JJ, et al.: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad U S A 2012, 109:4197-4202.
  • [29]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
  • [30]Zhao YJ, Zhang YH, Cao Y, Qi JX, Mao LW, Xue YF, Gao F, Peng H, Wang XW, Gao GF, et al.: Structural analysis of alkaline beta-mannanase from alkaliphilic Bacillus sp N16-5: implications for adaptation to alkaline conditions. PLoS One 2011, 6:e14608.
  • [31]Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, et al.: The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 2011, 6:e18814.
  • [32]Sakamoto T, Taniguchi Y, Suzuki S, Ihara H, Kawasaki H: Characterization of Fusarium oxysporum beta-1,6-galactanase, an enzyme that hydrolyzes larch wood arabinogalactan. Appl Environ Microbiol 2007, 73:3109-3112.
  • [33]Luonteri E, Laine C, Uusitalo S, Teleman A, Siika-aho M, Tenkanen M: Purification and characterization of Aspergillus beta-D-galactanases acting on beta-1,4- and beta-1,3/6-linked arabinogalactans. Carbohyd Polym 2003, 53:155-168.
  • [34]Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IKO: Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem 2010, 285:30261-30273.
  • [35]Sugino H, Furuichi S, Murao S, Arai M, Fujii T: Molecular characterization of a Rhodotorula-lytic enzyme from Paecilomyces lilacinus having beta-1,3-mannanase activity. Biosci Biotechnol Biochem 2004, 68:757-760.
  • [36]Correia MAS, Mazumder K, Bras JLA, Firbank SJ, Zhu YP, Lewis RJ, York WS, Fontes CMGA, Gilbert HJ: Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 2011, 286:22510-22520.
  • [37]Deboy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, et al.: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 2008, 190:5455-5463.
  • [38]Caines MEC, Vaughan MD, Tarling CA, Hancock SM, Warren RAJ, Withers SG, Strynadka NCJ: Structural and mechanistic analyses of endo-glycoceramidase II, a membrane-associated family 5 glycosidase in the Apo and G(M3) ganglioside-bound forms. J Biol Chem 2007, 282:14300-14308.
  • [39]Ishibashi Y, Nakasone T, Kiyohara M, Horibata Y, Sakaguchi K, Hijikata A, Ichinose S, Omori A, Yasui Y, Imamura A, et al.: A novel endoglycoceramidase hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. J Biol Chem 2007, 282:11386-11396.
  • [40]Zverlov VV, Velikodvorskaya GA, Schwarz WH: A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology 2002, 148:247-255.
  • [41]Iakiviak M, Mackie RI, Cann IKO: Functional analyses of multiple lichenin-degrading enzymes from the rumen Bacterium Ruminococcus albus 8. Appl Environ Microbiol 2011, 77:7541-7550.
  • [42]Cho KK, Kim SC, Woo JH, Bok JD, Choi YJ: Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb Technol 2000, 27:475-481.
  • [43]Tanabe T, Morinaga K, Fukamizo T, Mitsutomi M: Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Biosci Biotechnol Biochem 2003, 67:354-364.
  • [44]Hong I-P, Jang H-K, Lee S-Y, Choi S-G: Cloning and characterization of a bifunctional cellulase-chitosanase gene from Bacillus licheniformis NBL420. J Microbiol Biotechnol 2003, 13:35-42.
  • [45]Pedraza-Reyes M, Gutierrez-Corona F: The bifunctional enzyme chitosanase-cellulase produced by the gram-negative microorganism Myxobacter sp. AL-1 is highly similar to Bacillus subtilis endoglucanases. Arch Microbiol 1997, 168:321-327.
  • [46]Yaoi K, Nakai T, Kameda Y, Hiyoshi A, Mitsuishi Y: Cloning and characterization of two xyloglucanases from Paenibacillus sp strain KM21. Appl Environ Microbiol 2005, 71:7670-7678.
  • [47]Foong FCF, Doi RH: Characterization and comparison of Clostridium cellulovorans endoglucanases-xylanases EngB and EngD hyperexpressed in Escherichia coli. J Bacteriol 1992, 174:1403-1409.
  • [48]Schroder R, Wegrzyn TF, Sharma NN, Atkinson RG: LeMAN4 endo-beta-mannanase from ripe tomato fruit can act as a mannan transglycosylase or hydrolase. Planta 2006, 224:1091-1102.
  • [49]Dilokpimol A, Nakai H, Gotfredsen CH, Baumann MJ, Nakai N, Abou Hachem M, Svensson B: Recombinant production and characterisation of two related GH5 endo-beta-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. Biochim Biophys Acta 2011, 1814:1720-1729.
  • [50]Dias FMV, Vincent F, Pell G, Prates JAM, Centeno MSJ, Tailford LE, Ferreira LMA, Fontes CMGA, Davies GJ, Gilbert HJ: Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem 2004, 279:25517-25526.
  • [51]Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PCE, Sullivan PA, Cutfield JF: The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: Relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol 1999, 294:771-783.
  • [52]Duenas-Santero E, Martin-Cuadrado AB, Fontaine T, Latge JP, del Rey F, de Aldana CV: Characterization of glycoside hydrolase family 5 proteins in Schizosaccharomyces pombe. Eukaryot Cell 2010, 9:1650-1660.
  • [53]Schmidt S, Rainieri S, Witte S, Matern U, Martens S: Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 2011, 77:1751-1757.
  • [54]Ishibashi Y, Ikeda K, Sakaguchi K, Okino N, Taguchi R, Ito M: Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J Biol Chem 2012, 287:368-381.
  • [55]Mazzaferro LS, Breccia JD: Functional and biotechnological insights into diglycosidases. Biocatal Biotransfor 2011, 29:103-112.
  • [56]Mazzaferro L, Pinuel L, Minig M, Breccia JD: Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid beta-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch Microbiol 2010, 192:383-393.
  • [57]Tsuruhami K, Mori S, Amarume S, Saruwatari S, Murata T, Hirakake J, Sakata K, Usui T: Isolation and characterization of a beta-primeverosidase-like enzyme from Penicillium multicolor. Biosci Biotechnol Biochem 2006, 70:691-698.
  • [58]Pereira JH, Chen ZW, McAndrew RP, Sapra R, Chhabra SR, Sale KL, Simmons BA, Adams PD: Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol 2010, 172:372-379.
  • [59]Wu TH, Huang CH, Ko TP, Lai HL, Ma YH, Chen CC, Cheng YS, Liu JR, Guo RT: Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochim Biophys Acta 2011, 1814:1832-1840.
  • [60]Voget S, Steele HL, Streit WR: Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 2006, 126:26-36.
  • [61]Khan MAS, Akbar M, Kitaoka M, Hayashi K: A unique thermostable lichenase from Thermotoga maritima MSB8 with divergent substrate specificity. Indian J Biotechnol 2007, 6:315-320.
  • [62]Han YJ, Dodd D, Hespen CW, Ohene-Adjei S, Schroeder CM, Mackie RI, Cann IKO: Comparative analyses of two thermophilic enzymes exhibiting both beta-1,4 mannosidic and beta-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus. J Bacteriol 2010, 192:4111-4121.
  • [63]Wang WY, Thomson JA: Nucleotide sequence of the celA gene encoding a cellodextrinase of Ruminococcus flavefaciens Fd-1. Mol Gen Genet 1990, 222:265-269.
  • [64]Matsui H, Ogata K, Tajima K, Nagamine T, Nakamura M, Aminov R, Benno Y: Cloning, expression, and characterization of a cellulase gene from Prevotella ruminicola. Anim Sci J 2001, 72:421-426.
  • [65]Singh NA, Shanmugam V: Cloning and characterization of a bifunctional glycosyl hydrolase from an antagonistic Pseudomonas putida strain P3(4). J Basic Microbiol 2012, 52:340-349.
  • [66]Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT: Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2011, 2:375.
  • [67]Temuujin U, Kim JW, Kim JK, Lee BM, Kang HW: Identification of novel pathogenicity-related cellulase genes in Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol 2011, 76:152-157.
  • [68]Bahari L, Gilad Y, Borovok I, Kahel-Raifer H, Dassa B, Nataf Y, Shoham Y, Lamed R, Bayer EA: Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum. J Ind Microbiol Biotechnol 2011, 38:825-832.
  • [69]Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N: Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 2005, 272:1745-1755.
  • [70]Qasba PK, Kumar S: Molecular divergence of lysozymes and alpha-lactalbumin. Crit Rev Biochem Mol Biol 1997, 32:255-306.
  • [71]Sinnott ML: Catalytic Mechanisms of Enzymatic Glycosyl Transfer. Chem Rev 1990, 90:1171-1202.
  • [72]The Arabidopsis Information Resource. http://www.arabidopsis.org webcite
  • [73]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26:2460-2461.
  • [74]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [75]Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:9490.
  • [76]Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [77]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  文献评价指标  
  下载次数:11次 浏览次数:2次