期刊论文详细信息
BMC Infectious Diseases
Prognosis of patients with methicillin-resistant Staphylococcus aureus bloodstream infection treated with teicoplanin: a retrospective cohort study investigating effect of teicoplanin minimum inhibitory concentrations
Fu-Der Wang3  Le-Yin Hsu2  Chia-Min Weng2  Hau-Shin Wu1  Jann-Tay Wang2 
[1] Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, Taoyuan County 327, Taiwan;Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;National Yang-Ming University School of Medicine, Taipei 112, Taiwan
关键词: Minimum inhibitory concentration;    Bloodstream infection;    Methicillin-resistant Staphylococcus aureus;    Teicoplanin;   
Others  :  1148861
DOI  :  10.1186/1471-2334-13-182
 received in 2012-10-08, accepted in 2013-04-14,  发布年份 2013
PDF
【 摘 要 】

Background

The present study was designed to investigate whether teicoplanin minimum inhibitory concentrations (MICs) of methicillin-resistant Staphylococcus aureus (MRSA) isolates play a role in the prognosis of patient with teicoplanin-treated MRSA bloodstream infection (BSI).

Methods

Between 1 January 2006 and 31 December 2009, adult patients with teicoplanin-treated MRSA BSI in two Taiwan medical centers were retrospectively enrolled. Their blood MRSA isolates were submitted for determination of MICs to various antibiotics and multi-locus sequence types. All-cause mortalities on Days 14 and 30, as well as clinical response at the end of teicoplanin therapy were treated as endpoints.

Results

Two hundred seventy adult patients were enrolled and 210 blood MRSA isolates were available. Independent risk factors for un-favorable outcome at the end of teicoplanin therapy included septic shock (p < 0.0001) and an elevated C-reactive protein level (p = 0.0064). The independent risk factors for all-cause Day 14 mortality (13.0%) included the presence of auto-immune diseases (p = 0.0235), septic shock (p = 0.0253) and thrombocytopenia (p = 0.0018). The independent risk factors for all-cause Day 30 mortality (26.3%) included age (p = 0.0102), septic shock (p < 0.0001) and thrombocytopenia (p = 0.0059).

Conclusions

The current study didn’t find a significant role for teicoplanin MICs in the prognosis of adult patients with teicoplanin-treated MRSA BSI.

【 授权许可】

   
2013 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404220621790.pdf 200KB PDF download
【 参考文献 】
  • [1]King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM: Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 2006, 144:309-317.
  • [2]Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA: EMERGEncy ID group: Methicillin-resistant Staphylococcus aureus infections among patients in the emergency department. N Engl J Med 2006, 355:666-674.
  • [3]Seybold U, Kourbatova EV, Johnson JG, Halvosa SJ, Wang YF, King MD, Ray SM, Blumberg HM: Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infec Dis 2006, 42:647-656.
  • [4]Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG: Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg Infect Dis 2007, 13:236-242.
  • [5]Moise PA, Sakoulas G, Forrest A, Schentag JJ: Vancomycin in vitro bacterial activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bloodstream infection. Antimicrob Agents Chemother 2007, 51:2582-2586.
  • [6]Soriano A, Marco F, Martinez JA, Pisos E, Almela M, Dimova VP, Alamo D, Ortega M, Lopez J, Mensa J: Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008, 46:193-200.
  • [7]Fang CT, Shau WY, Hsueh PR, Chen YC, Wang JT, Hung CC, Huang LY, Chang SC: Early empirical glycopeptides therapy for patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on the outcome. J Antimicrob Chemother 2006, 57:511-519.
  • [8]Wang JT, Wang JL, Fang CT, Chie WC, Lai MS, Lauderdale TL, Weng CM, Chang SC: Risk factors for mortality of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection: with investigation of the potential role of community-associated MRSA strains. J Infect 2010, 61:449-457.
  • [9]Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ: Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case–control study. Clin Infect Dis 2012, 54:51-58.
  • [10]Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, Dalovisio JR, Levine DP: Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009, 66:82-98.
  • [11]Musta AC, Riederer K, Shemes S, Chase P, Jose J, Johnson LB, Khatib R: Vancomycin MIC plus heteroresistance and outcome of methicillin-resistant Staphylococcus aureus bacteremia: trends over 11 years. J Clin Microbiol 2009, 47:1640-1644.
  • [12]Biedenbach DJ, Bell JM, Sader HS, Fritsche TR, Jones RN, Turnidge JD: Antimicrobial susceptibility of Gram-positive bacterial isolates from the Asia-Pacific region and an in vitro evaluation of the bactericidal activity of daptomycin, vancomycin, and teicoplanin: a SENTRY Program Report (2003–2004). Int J Antimicrob Agents 2007, 30:143-149.
  • [13]Traczewski MM, Katz BD, Steenbergen JN, Brown SD: Inhibitory and bactericidal activities of daptomycin, vancomycin, and teicoplanin against methicillin-resistant Staphylococcus aureus isolates collected from 1985 to 2007. Antimicrob Agents Chemother 2009, 53:1735-1738.
  • [14]Chang HJ, Hsu PC, Yang CC, Kiu LK, Kuo AJ, Chia JH, Wu TL, Huang CT, Lee MH: Influence of teicoplanin MICs on treatment outcomes among patients with teicoplanin-treated methicillin-resistant Staphylococcus aureus bacteremia: a hospital-based retrospective study. J Antimicrob Chemother 2012, 67:736-741.
  • [15]Horan TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008, 36:309-332.
  • [16]Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ: Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101:1644-1655.
  • [17]Charlson ME, Pompei P, Ales KL, MacKenzie CR: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987, 40:373-383.
  • [18]Tseng YC, Wang JT, Wu FL, Chen YC, Chie WC, Chang SC: Prognosis of adult patients with bloodstream infection caused by extensively resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 2007, 59:181-190.
  • [19]Wang JT, Liao HI, Wu Lin FL, Chang SC: Loading dose required to achieve rapid therapeutic teicoplanin trough plasma concentration in patients with multidrug-resistant gram-positive infections. Basic Clin Pharmacol Toxicol 2012, 110:416-420.
  • [20]Clinical and Laboratory Standards Institute (CLSI: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. In CLSI. Seventh edition. Wayne, PA: CLSI document M7-A4; 2006.
  • [21]Clinical and Laboratory Standards Institute (CLSI): Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement. In CLSI. Wayne, PA: CLSI document M100–S18; 2008.
  • [22]Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG: Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible Staphylococcus aureus. J Clin Microbiol 2000, 38:1008-1015.
  • [23]Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA, Chambers HF: Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011, 52:1-38.
  • [24]Kao TM, Wang JT, Weng CM, Chen YC, Chang SC: In vitro activity of linezolid, tigecycline, and daptomycin on methicillin-resistant Staphylococcus aureus blood isolates from adult patients, 2006–2008: stratified analysis by vancomycin MIC. J Microbiol Immunol Infect 2011, 44:346-351.
  • [25]Song JH, Hsueh PR, Chung DR, Ko KS, Kang CI, Peck KR, Yeom JS, Kim SW, Chang HH, Kim YS: Spread of methicillin-resistant Staphylococcus aureus between the community and hospitals in Asian countries: an ANSORP study. J Antimicorb Chemother 2011, 66:1061-1069.
  • [26]Chen CJ, Hsueh PR, Su LH, Chiu CH, Lin TY, Huang YC: Change in the molecular epidemiology of methicillin-resistant Staphylococcus aureus bloodstream infections in Taiwan. Diagn Microbiol Infect Dis 2009, 65:199-201.
  • [27]European Committee on Antimicrobial Susceptibility Testing (EUCAST): Breakpoint tables for interpretation of MICs and zone diameters. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v1.1.xls webcite
  • [28]Vaudaux P, Huggler E, Bernard L, Ferry T, Renzoni A, Lew DP: Underestimation of vancomycin and teicoplanin MICs by broth microdilution leads to underdetection of glycopeptide-intermediate isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2010, 54:3861-3870.
  • [29]Harding I, MacGownan AP, White LO, Darley ESR, Reed V: Teicoplanin therapy for Staphylococcus aureus bacteremia: relationship between pre-dose serum concentrations and outcome. J Antimicrob Chemother 2000, 45:835-841.
  文献评价指标  
  下载次数:8次 浏览次数:88次