| BMC Genomics | |
| Large proportion of genes in one cryptic WO prophage genome are actively and sex-specifically transcribed in a fig wasp species | |
| Da-Wei Huang4  Jin-Hua Xiao1  Guang-Chang Ma3  Li-Ming Niu3  Guan-Hong Wang2  | |
| [1] Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100039, China;Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China;Plant Protection College, Shandong Agricultural University, Tai’an 271018, China | |
| 关键词: Ankyrin-domain-containing protein; Real-time quantitative PCR; Reverse-transcription PCR; Bacteriophage WO; Defective prophage; | |
| Others : 1128463 DOI : 10.1186/1471-2164-15-893 |
|
| received in 2014-05-14, accepted in 2014-10-03, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Cryptic prophages are genetically defective in their induction and propagation, and are simply regarded as genetic remnants. There are several putative cryptic WO prophages in the sequenced Wolbachia genomes. Whether they are lytic is unclear and their functions are poorly understood. Only three open reading frames (ORFs) in cryptic WO prophages have been reported to be actively transcribed.
Results
In this study, we comprehensively examined the transcription of the only cryptic WO prophage (WOSol) in a Wolbachia strain that infects a fig wasp, Ceratosolen solmsi (Agaonidae, Chalcidoidea). By analyzing the transcriptions of all the ORFs of WOSol in both sexes of C. solmsi, using qualitative and quantitative methods, we demonstrated that i) a high percentage of ORFs are actively transcribed (59%, 17/29); ii) the expression of these ORFs is highly sex-specific, with a strong male bias (three in females and 15 in males); iii) an ank (ankyrin-domain-containing) gene actively transcribed in both wasp sexes is more highly expressed in males.
Conclusions
A large proportion of the genes in the cryptic WO prophage WOSol are expressed, which overturns the concept that cryptic prophages are simply genetically defective. The highly sex-specific expression patterns of these genes in the host suggest that they play important roles in Wolbachia biology and its reproductive manipulation of its insect host, particularly through the males.
【 授权许可】
2014 Wang et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150223181036273.pdf | 606KB | ||
| Figure 3. | 82KB | Image | |
| Figure 2. | 62KB | Image | |
| Figure 1. | 76KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Lwoff A: Interaction among virus, cell, and organism. Science 1966, 152(3726):1216-1220.
- [2]Adams MH: Bacteriophages. New York: Interscience Publishers; 1959:1-4.
- [3]Echols H: Developmental pathways for the temperate phage: lysis vs lysogeny. Annu Rev Genet 1972, 6(1):157-190.
- [4]Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T: Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol 2009, 75(17):5676-5686.
- [5]Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ: The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2006, 2(5):e43.
- [6]Kent BN, Salichos L, Gibbons JG, Rokas A, Newton ILG, Clark ME, Bordenstein SR: Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol 2011, 3:209.
- [7]Fujii Y, Kubo T, Ishikawa H, Sasaki T: Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 2004, 317(4):1183-1188.
- [8]Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Bouletreau M: Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 2004, 13(2):147-153.
- [9]Breeuwer JA, Werren JH: Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 1990, 346(6284):558-560.
- [10]Stouthamer R, Luck RF, Hamilton W: Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci USA 1990, 87(7):2424-2427.
- [11]Legrand J, Legrand Hamelin E, Juchault P: Sex determination in crustacea. Biol Rev 1987, 62(4):439-470.
- [12]Werren JH, Hurst G, Zhang W, Breeuwer J, Stouthamer R, Majerus M: Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 1994, 176(2):388-394.
- [13]Turelli M: Evolution of incompatibility-inducing microbes and their hosts. Evolution 1994, 48:1500-1513.
- [14]Barreto FS, Burton RS: Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Mol Biol Evol 2013, 30(2):310-314.
- [15]Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S, Bouletreau M, Vavre F: A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol 2007, 24(2):427-435.
- [16]Masui S, Kamoda S, Sasaki T, Ishikawa H: Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 2000, 51(5):491-497.
- [17]Metcalf JA, Bordenstein SR: The complexity of virus systems: the case of endosymbionts. Curr Opin Microbiol 2012, 15:1-7.
- [18]Lawrence JG, Hendrix RW, Casjens S: Where are the pseudogenes in bacterial genomes? Trends Microbiol 2001, 9(11):535-540.
- [19]Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H: Prophage genomics. Microbiol Mol Biol Rev 2003, 67(2):238-276.
- [20]Saridaki A, Sapountzis P, Harris HL, Batista PD, Biliske JA, Pavlikaki H, Oehler S, Savakis C, Braig HR, Bourtzis K: Wolbachia prophage DNA adenine methyltransferase genes in different Drosophila-Wolbachia associations. PLoS ONE 2011, 6(5):e19708.
- [21]Furukawa S, Tanaka K, Ikeda T, Fukatsu T, Sasaki T: Quantitative analysis of the lytic cycle of WO phages infecting Wolbachia. Appl Entomol Zoolog 2012, 47(4):449-456.
- [22]Kent BN, Funkhouser LJ, Setia S, Bordenstein SR: Evolutionary genomics of a temperate bacteriophage in an obligate intracellular bacteria (Wolbachia). PLoS ONE 2011, 6(9):e24984.
- [23]Biliske JA, Batista PD, Grant CL, Harris HL: The bacteriophage WORiC is the active phage element in wRi of Drosophila simulans and represents a conserved class of WO phages. BMC Microbiol 2011, 11:251. BioMed Central Full Text
- [24]Wommack KE, Colwell RR: Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 2000, 64(1):69-114.
- [25]Brüssow H, Canchaya C, Hardt WD: Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004, 68(3):560-602.
- [26]Abedon ST, LeJeune JT: Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinformatics Online 2005, 1:97.
- [27]Wang X, Kim Y, Wood TK: Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J 2009, 3(10):1164-1179.
- [28]Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK: Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010, 1:147.
- [29]Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T: The defective prophage pool of Escherichia coli O157: prophage–prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 2009, 5(5):e1000408.
- [30]Klasson L, Westberg J, Sapountzis P, Näslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R: The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 2009, 106(14):5725-5730.
- [31]Wang GH, Xiao JH, Xiong TL, Li Z, Murphy RW, Huang DW: High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) for determination of a highly degenerated prophage WO genome in a Wolbachia strain infecting a fig wasp species. Appl Environ Microbiol 2013, 79(23):7476-7481.
- [32]Chauvatcharin N, Ahantarig A, Baimai V, Kittayapong P: Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative density. Mol Ecol 2006, 15(9):2451-2461.
- [33]Sinkins SP, Walker T, Lynd AR, Steven AR, Makepeace BL, Godfray HCJ, Parkhill J: Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 2005, 436(7048):257-260.
- [34]Sanogo YO, Dobson SL: WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochem Mol Biol 2006, 36(1):80-85.
- [35]Werren JH: Biology of Wolbachia. Annu Rev Entomol 1997, 42(1):587-609.
- [36]LePage D, Bordenstein S: Wolbachia: can we save lives with a great pandemic? Trends Parasitol 2013, 29:8.
- [37]Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR, Parkhill J, Sinkins SP: Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 2007, 5(1):39. BioMed Central Full Text
- [38]Fenn K, Blaxter M: Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol 2006, 22(2):60-65.
- [39]Pichon S, Bouchon D, Liu C, Chen L, Garrett RA, Greve P: The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods. BMC Microbiol 2012, 12(1):55. BioMed Central Full Text
- [40]Xiao JH, Wang NX, Murphy RW, Cook J, Jia LY, Huang DW: Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution 2011, 66:1907-1916.
- [41]Bork P: Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Protein Struct Funct Bioinformatics 1993, 17(4):363-374.
- [42]Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY: The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 2004, 13(6):1435-1448.
- [43]Li J, Mahajan A, Tsai M-D: Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 2006, 45(51):15168-15178.
- [44]Andersson SG, Zomorodipour A, Andersson JO, Sicheritz Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG: The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998, 396(6707):133-140.
- [45]Caturegli P, Asanovich KM, Walls JJ, Bakken JS, Madigan JE, Popov VL, Dumler JS: ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect Immun 2000, 68(9):5277-5283.
- [46]Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O'Neill SL, Thomson N: Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 2008, 25(9):1877-1887.
- [47]Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N: Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2004, 2(3):e69.
- [48]Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T, Malfatti SA, Hunter MS, Horn M: Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012, 8(10):e1003012.
- [49]Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J: The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005, 3(4):e121.
- [50]Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Radford AD, Blaxter ML, Tanya VN: Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 2012, 22:2467-2477.
- [51]Iturbe-Ormaetxe I, Burke GR, Riegler M, O'Neill SL: Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 2005, 187(15):5136-5145.
- [52]Zhou W, Rousset F, O'Neill S: Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc R Soc LondB 1998, 265(1395):509-515.
- [53]Noonan KE, Roninson IB: mRNA phenotyping by enzymatic amplification of randomly primed cDNA. Nucleic Acids Res 1988, 16(21):10366-10366.
- [54]McDaniel L, Breitbart M, Mobberley J, Long A, Haynes M, Rohwer F, Paul JH: Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression. PLoS ONE 2008, 3(9):e3263.
- [55]Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N: Statistical significance of quantitative PCR. BMC Bioinformatics 2007, 8(1):131. BioMed Central Full Text
- [56]Peirson SN, Butler JN, Foster RG: Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 2003, 31(14):e73-e73.
- [57]Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H: Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s C T difference” formula. J Mol Med 2006, 84(11):901-910.
- [58]Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, Van den Hoff M, Moorman A: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009, 37(6):e45-e45.
- [59]Ramakers C, Ruijter JM, Deprez RHL, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339(1):62-66.
- [60]Wang B, Xiao JH, Bian SN, Niu LM, Murphy RW, Huang DW: Evolution and expression plasticity of opsin genes in a fig pollinator, Ceratosolen solmsi. PLoS ONE 2013, 8(1):e53907.
- [61]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55(4):611-622.
PDF