BMC Research Notes | |
Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group | |
Julien Brillard4  Véronique Broussolle3  Christophe Nguyen-the3  Benoit De Sarrau2  Marie-Hélène Guinebretière1  Sara Esther Diomandé3  | |
[1] INRA, UMR408 SQPOV, Site Agroparcs, 228 route de l’Aérodrome, Avignon Cedex 9, 84914, France;Xurian Environnement, ZAE Béziers Ouest, rue du Jéroboam, Béziers, 34500, France;Université d’Avignon, UMR408 Sécurité et Qualité des Produits d’Origine Végétale, Avignon, 84000, France;INRA, UMR 1333 DGIMI, Université Montpellier, Montpellier Cedex 5, 34095, France | |
关键词: Temperature tolerance; Desaturases; Fatty acids; B. cereus Group; | |
Others : 1230908 DOI : 10.1186/s13104-015-1288-4 |
|
received in 2014-11-14, accepted in 2015-07-22, 发布年份 2015 | |
【 摘 要 】
Background
The Bacillus cereus Group consists of closely-related bacteria, including pathogenic or harmless strains, and whose species can be positioned along the seven phylogenetic groups of Guinebretière et al. (I–VII). They exhibit different growth-temperature ranges, through thermotolerant to psychrotolerant thermotypes. Among these, B. cytotoxicus is an atypical thermotolerant and food-poisoning agent affiliated to group VII whose thermotolerance contrasts with the mesophilic and psychrotolerant thermotypes associated to the remaining groups I–VI. To understand the role of fatty acid (FA) composition in these variable thermotypes (i.e. growth behavior vs temperatures), we report specific features differentiating the FA pattern of B. cytotoxicus (group VII) from its counterparts (groups I–VI).
Findings
The FA pattern of thermotolerant group VII (B. cytotoxicus) displayed several specific features. Most notably, we identified a high ratio of the branched-chain FAs iso-C15/iso-C13 (i15/i13) and the absence of the unsaturated FA (UFA) C16:1(5) consistent with the absence of ∆5 desaturase DesA. Conversely, phylogenetic groups II–VI were characterized by lower i15/i13 ratios and variable proportions of C16:1(5) depending on thermotype, and presence of the DesA desaturase. In mesophilic group I, thermotype seemed to be related to an atypically high amount of C16:1(10) that may involve ∆10 desaturase DesB.
Conclusion
The levels of i15/i13 ratio, C16:1(5) and C16:1(10) UFAs were related to growth temperature variations recorded between thermotypes and/or phylogenetic groups. These FA are likely to play a role in membrane fluidity and may account for the differences in temperature tolerance observed in B. cereus Group strains.
【 授权许可】
2015 Diomandé et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151108080632291.pdf | 1171KB | download | |
Fig.1. | 41KB | Image | download |
【 图 表 】
Fig.1.
【 参考文献 】
- [1]Yano Y, Nakayama A, Ishihara K, Saito H: Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 1998, 64:479-485.
- [2]Sinensky M: Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol 1971, 106:449-455.
- [3]de Sarrau B, Clavel T, Clerte C, Carlin F, Ginies C, Nguyen-The C: Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties. Appl Environ Microbiol 2012, 78:1715-1723.
- [4]Beranova J, Mansilla MC, de Mendoza D, Elhottova D, Konopasek I: Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. J Bacteriol 2010, 192:4164-4171.
- [5]Fulco AJ: The effect of temperature on the formation of delta 5-unsaturated fatty acids by bacilli. Biochim Biophys Acta 1967, 144:701-703.
- [6]Fulco AJ: The biosynthesis of unsaturated fatty acids by Bacilli: III. Uptake and utilization of exogenous palmitate. J Biol Chem 1972, 247:3503-3510.
- [7]Fulco AJ: The biosynthesis of unsaturated fatty acids by Bacilli: I. Temperature induction of the desaturation reaction. J Biol Chem 1969, 244:889-895.
- [8]Kaneda T: Positional preference of fatty acids in phospholipids of Bacillus cereus and its relation to growth temperature. Biochim Biophys Acta 1972, 280:297-305.
- [9]Bredeston LM, Marciano D, Albanesi D, De Mendoza D, Delfino JM: Thermal regulation of membrane lipid fluidity by a two-component system in Bacillus subtilis. Biochem Mol Biol Educ 2011, 39:362-366.
- [10]Chazarreta Cifre L, Alemany M, de Mendoza D, Altabe S: Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases. Appl Environ Microbiol. 2013, 79:6271-6279.
- [11]Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D: Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 2001, 20:1681-1691.
- [12]Kampfer P: Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 1994, 17:86-98.
- [13]Kampfer P (2002) Whole-cell fatty acid analysis in the systematics of Bacillus and related genera. In: Berkeley R, Heyndrickx M, Logan N, DeVos P (eds) Applications and Systematics of Bacillus and Relatives, pp 271–299
- [14]Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, et al.: Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009, 59:2114-2121.
- [15]Guinebretière M-H, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, et al.: Ecological diversification in the Bacillus cereus Group. Environ Microbiol 2008, 10:851-865.
- [16]Guinebretiere MH, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C: Ability of Bacillus cereus Group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J Clin Microbiol 2010, 48:3388-3391.
- [17]Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M, et al.: Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol 2011, 28:236-244.
- [18]Bravo A, Likitvivatanavong S, Gill SS, Soberon M: Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 2011, 41:423-431.
- [19]Stenfors Arnesen L, Fagerlund A, Granum P: From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 2008, 32:579-606.
- [20]Kalamas AG: Anthrax. Anesthesiol Clin N Am 2004, 22:533-540.
- [21]Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, et al.: Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 2013, 63:31-40.
- [22]Lund T, De Buyser M-L, Granum PE: A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 2000, 38:254-261.
- [23]Fagerlund A, Ween O, Lund T, Hardy SP, Granum PE: Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 2004, 150:2689-2697.
- [24]Fagerlund A, Brillard J, Furst R, Guinebretiere MH, Granum PE: Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol 2007, 7:43. BioMed Central Full Text
- [25]Brillard J, Lereclus D: Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology-Sgm. 2004, 150:2699-2705.
- [26]Claus D, Berkeley RCW: Genus Bacillus Cohn 1872, 174 AL. In Bergey’s manual of systematic bacteriology. Edited by Sneath PHA, Mair NS, Sharpe ME, Holt JG. Williams & Wilkins, Baltimore; 1986:1105-1139.
- [27]Brillard J, Jehanno I, Dargaignaratz C, Barbosa I, Ginies C, Carlin F, et al.: Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Appl Environ Microbiol 2010, 76:2562-2573.
- [28]Diomandé S, Chamot S, Antolinos V, Vasai F, Guinebretière M-H, Bornard I, et al.: The CasKR two-component system is required for growth at low temperature of mesophilic and psychrotolerant Bacillus cereus strains. Appl Environ Microbiol 2014.
- [29]Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al.: IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 2012, 40:D115-D122.
- [30]Song Y, Yang R, Guo Z, Zhang M, Wang X, Zhou F: Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol Methods 2000, 39:225-241.