期刊论文详细信息
BMC Medical Genomics
Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a northern european family population
Ahmed H Kissebah5  Melanie A Carless4  John Blangero4  Michael Olivier1  Robert Diasio2  Omar Ali3  Diana Cerjak3  Adam Lee2  Jack W Kent4  Yi Zhang5 
[1] Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA;Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA;Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA;Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78245, USA;Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
关键词: Association studies;    Family studies;    Fatty acid binding proteins;    Metabolic syndrome;    Epigenetic regulation;   
Others  :  1098154
DOI  :  10.1186/1755-8794-6-9
 received in 2012-10-08, accepted in 2013-03-06,  发布年份 2013
PDF
【 摘 要 】

Background

Fatty acid-binding proteins (FABPs) play regulatory roles at the nexus of lipid metabolism and signaling. Dyslipidemia in clinical manifestation frequently co-occurs with obesity, insulin resistance and hypertension in the Metabolic Syndrome (MetS). Animal studies have suggested FABPs play regulatory roles in expressing MetS phenotypes. In our family cohort of Northern European descent, transcript levels in peripheral white blood cells (PWBCs) of a key FABPs, FABP3, is correlated with the MetS leading components. However, evidence supporting the functions of FABPs in humans using genetic approaches has been scarce, suggesting FABPs may be under epigenetic regulation. The objective of this study was to test the hypothesis that CpG methylation status of a key regulator of lipid homeostasis, FABP3, is a quantitative trait associated with status of MetS phenotypes in humans.

Methods

We used a mass-spec based quantitative method, EpiTYPER®, to profile a CpG island that extends from the promoter to the first exon of the FABP3 gene in our family-based cohort of Northern European descent (n=517). We then conducted statistical analysis of the quantitative relationship of CpG methylation and MetS measures following the variance-component association model. Heritability of each methylation and the effect of age and sex on CpG methylation were also assessed in our families.

Results

We find that methylation levels of individual CpG units and the regional average are heritable and significantly influenced by age and sex. Regional methylation was strongly associated with plasma total cholesterol (p=0.00028) and suggestively associated with LDL-cholesterol (p=0.00495). Methylation at individual units was significantly associated with insulin sensitivity, lipid particle sizing and diastolic blood pressure (p<0.0028, corrected for multiple testing for each trait). Peripheral white blood cell (PWBC) expression of FABP3 in a separate group of subjects (n=128) negatively correlated with adverse profiles of metabolism (βWHR = −0.72; βLDL-c = −0.53) while positively correlated with plasma adiponectin (β=0.24). Further, we show that differential methylation of FABP3 affects binding activity with nuclear proteins from heart tissue. This region that we found under methylation regulation overlaps with a region actively modified by histone codes in the newly available ENCODE data.

Conclusions

Our findings suggest that DNA methylation of FABP3 strongly influences MetS, and this may have important implications for cardiovascular disease.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150131020050887.pdf 899KB PDF download
Figure 3. 83KB Image download
Figure 2. 62KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Khan SA, Vanden Heuvel JP: Reviews: current topics role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 2003, 14:554-567.
  • [2]Day C: Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res 2007, 4:32-38.
  • [3]Storch J, Thumser AE: Tissue-specific Functions in the Fatty Acid-binding Protein Family. J Biol Chem 2010, 285:32679-32683.
  • [4]Makowski L, Hotamisligil GS: The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 2005, 16:543-548.
  • [5]Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS: Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 2006, 52:405-413.
  • [6]Akbal E, Özbek M, Güneş F, Akyürek O, Üreten K, Delibaş T: Serum heart type fatty acid binding protein levels in metabolic syndrome. Endocrine 2009, 36:433-437.
  • [7]Heuckeroth RO, Birkenmeir EH, Levin MS, Gordon JI: Analysis of the Tissue-specific Expression, Developmental Regulation, and Linkage Relationships of a Rodent Gene Encoding Heart Fatty Acid Binding Protein. J Biol Chem 1987, 262:9709-9717.
  • [8]Veerkamp JH, Paulussen RJA, Peeters RA, Maatman RGHJ, Van Moerkert HTB, Van Kuppevelt TH: Detection, tissue distribution, and (sub)cellular localization of fatty acid binding protein types. Mol Cell Biochem 1990, 98:11-18.
  • [9]Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004, 101:6062-6067.
  • [10]Binas B, Dannenberg H, McWhir J, Mullins L, Clark JA: Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 1999, 13:805-812.
  • [11]Shearer J, Fueger PT, Rottman JN, Bracy DP, Binas B, Wasserman DH: Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise. Am J Physiol Endocrinol Metab 2005, 288:E292-E297.
  • [12]Li B, Zerby HN, Lee K: Heart fatty acid binding protein is upregulated during porcine adipocyte development. J Anim Sci 2007, 85:1651-1659.
  • [13]Shearer J, Fueger PT, Bracy DP, Wasserman DH, Rottman JN: Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulin resistance. Diabetes 2005, 54:3133-3139.
  • [14]Shioda N, Yamamoto Y, Watanabe M, Binas B, Owada Y, Fukunaga K: Heart-Type Fatty Acid Binding Protein Regulates Dopamine D2 Receptor Function in Mouse Brain. J Neurosci 2010, 30:3146-3155.
  • [15]Niizeki T, Takeishi Y, Takabatake N, Shibata Y, Konta T, Kato T, Kawata S, Kubota I: Circulating levels of heart-type fatty acid-binding protein in a general Japanese population: effects of age, gender, and physiologic characteristics. Circ J 2007, 71:1452-1457.
  • [16]Karbek B, Özbek M, Bozkurt NC, Ginis Z, Güngünes A, Ünsal IÖ, Cakal E, Delibası T: Heart-type fatty acid binding protein (H-FABP): relationship with arterial intima-media thickness and role as diagnostic marker for atherosclerosis in patients with ımpaired glucose metabolism. Cardiovasc Diabetol 2011, 10:37. BioMed Central Full Text
  • [17]Watanabe K, Wakabayashi H, Veerkamp JH, Ono T, Suzuki T: Immunohistochemical distribution of heart-type fatty acid binding protein immunoreactivity in normal human tissues and acute myocardial infarction. J Pathol 1993, 170:59-65.
  • [18]Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C: American Heart Association; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109:433-438.
  • [19]Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH: Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism 1984, 33:68-75.
  • [20]Peiris AN, Mueller RA, Smith GA, Struve MF, Kissebah AH: Splanchnic insulin metabolism in obesity. Influence of body fat distribution. J Clin Invest 1986, 78:1648-1657.
  • [21]Ueno T, Soma M, Tabara Y, Tokunaga K, Tahira K, Fukuda N, Matsumoto K, Nakayama T, Katsuya T, Ogihara T, Makita Y, Hata A, Yamada M, Takahashi M, Hirawa N, Umemura S, Miki T: Association between fatty acid binding protein 3 gene variants and essential hypertension in humans. Am J Hypertens 2008, 21:691-695.
  • [22]Shin HD, Kim LH, Park BL, Jung HS, Cho YM, Moon MK, Lee HK, Park KS: Polymorphisms in fatty acid-binding protein-3 (FABP3) – putative association with type 2 diabetes mellitus. Hum Mutat 2003, 22:180.
  • [23]Murphy SK, Jirtle RL: Imprinting evolution and the price of silence. BioEssays 2003, 25:577-588.
  • [24]Portela A, Esteller M: Epigenetic modifications and human disease. Nat Biotechnol 2010, 28:1057-1068.
  • [25]Sharma S, Kelly TK, Jones PA: Epigenetics in cancer. Carcinogenesis 2010, 31:27-36.
  • [26]Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC: Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005, 135:1382-1386.
  • [27]Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ: Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 2007, 100:520-526.
  • [28]Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC: Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007, 97:1064-1073.
  • [29]Fan S, Zhang X: CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun 2009, 383:421-425.
  • [30]Scarpellini E, Tack J: Obesity and metabolic syndrome: an inflammatory condition. Dig Dis 2012, 30(2):148-153.
  • [31]Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140:900-917.
  • [32]Neels JG, Olefsky JM: Inflamed fat: what starts the fire? J Clin Invest 2006, 116:33-35.
  • [33]Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, Wainstein J, Friedlander Y, Levy-Lahad E, Glaser B, Hellman A: Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 2012, 21:371-383.
  • [34]Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, Akan P, Stupka E, Down TA, Prokopenko I, Morison IM, Mill J, Pidsley R, Deloukas P, Frayling TM, Hattersley AT, McCarthy MI, Beck S, Hitman GA, International Type 2 Diabetes 1q Consortium: Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 2010, 5:e14040.
  • [35]Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, Gao X, Lu DR: Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 2008, 51:1525-1533.
  • [36]Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S: Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008, 51:615-622.
  • [37]Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, Hixson JE, Henkel RD, Sharp RM, Comuzzie AG, VandeBerg JL, Stern MP, MacCluer JW: Genetic and Environmental Contributions to Cardiovascular Risk Factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996, 94:2159-2170.
  • [38]Smith EM, Zhang Y, Baye TM, Gawrieh S, Cole R, Blangero J, Carless MA, Curran JE, Dyer TD, Abraham LJ, Moses EK, Kissebah AH, Martin LJ, Olivier M: INSIG1 influences obesity-related hypertriglyceridemia in humans. J Lipid Res 2010, 51:701-708.
  • [39]Zhang Y, Smith EM, Baye TM, Eckert JV, Abraham LJ, Moses EK, Kissebah AH, Martin LJ, Olivier M: Serotonin (5-HT) receptor 5A sequence variants affect human plasma triglyceride levels. Physiol Genomics 2010, 42:168-176.
  • [40]Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG, Marks JA, Krakower GR, Jacob HJ, Weber J, Martin L, Blangero J, Comuzzie AG: Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA 2000, 97:14478-144783.
  • [41]Svendsen OL, Haarbo J, Heitmann BL, Gotfredsen A, Christiansen C: Measurement of body fat in elderly subjects by dual-energy x-ray absorptiometry, bioelectrical impedance, and anthropometry. Am J Clin Nutr 1991, 53:1117-1123.
  • [42]Peiris AN, Hennes MI, Evans DJ, Wilson CR, Lee MB, Kissebah AH: Relationship of anthropometric measurements of body fat distribution to metabolic profile in premenopausal women. Acta Med Scand Suppl 1988, 723:179-188.
  • [43]Bergman RN: Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989, 38:1512-1527.
  • [44]Rainwater DL, Moore PH Jr, Shelledy WR, Dyer TD, Slifer SH: Characterization of a composite gradient gel for the electrophoretic separation of lipoproteins. J Lipid Res 1997, 38:1261-1266.
  • [45]Dupont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL: Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 2005, 66:175-191.
  • [46]Lee A, Nofziger C, Dossena S, Vanoni S, Diasio R, Paulmichl M: Methylation of the Human Pendrin Promoter. Cell Physiol Biochem 2011, 28:397-406.
  • [47]Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J: Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007, 39(10):1208-1216.
  • [48]Richardson B, Lu Q: Methods for Analyzing the Role of DNA Methylation and Chromatin Structure in Regulating T Lymphocyte Gene Expression. Biol Proced 2004, 6:189-203.
  • [49]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2011. ISBN 3-900051-07-0, (http://www.R-project.org webcite)
  • [50]Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998, 62:1198-1211.
  • [51]Self SG, Liang KY: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Amer Stat Assoc 1987, 82:605-610.
  • [52]Moskvina V, Schmidt KM: On multiple-testing correction in genome-wide association studies. Genet Epidemiol 2008, 32:567-573.
  • [53]Qian Q, Kuo L, Yu TY, Rottman JN: A Concise Promoter Region of the Hearth Fatty Acid-Binding Protein Gene Dictates Tissue-Appropriate Expression. Circ Res 1999, 84:276-289.
  • [54]Deng G, Chen A, Hong J, Chae HS, Kim YS: Methylation of CpG in a Small Region of the hMLH1 Promoter Invariably Correlates with the Absence of Gene Expression. Cancer Res 1999, 59:2029-2023.
  • [55]Zöchbauer-Müller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, Virmani AK, Milchgrub S, Gazdar AF, Minna JD: 5′ CpG Island Methylation of the FHIT Gene Is Correlated with Loss of Gene Expression in Lung and Breast Cancer. Cancer Res 2001, 61:3581-3585.
  • [56]Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, Wahlstrand B, Hedner T, Corella D, Tai ES, Ordovas JM, Berglund G, Vartiainen E, Jousilahti P, Hedblad B, Taskinen MR, Newton-Cheh C, Salomaa V, Peltonen L, Groop L, Altshuler DM, Orho-Melander M: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189-197.
  • [57]Zabaneh D, Balding DJ: A genome-wide association study of the metabolic syndrome in Indian Asian men. PLoS One 2010, 8:e11961.
  • [58]Carroll MD, Lacher DA, Sorlie PD, Cleeman JI, Gordon DJ, Wolz M, Grundy SM, Johnson CL: Trends in serum lipids and lipoproteins of adults, 1960–2002. JAMA 2005, 294(14):1773-1781.
  • [59]Ebrahim S, Beswick A, Burke M, Davey Smith G: Multiple risk factor interventions for primary prevention of coronary heart disease. Cochrane Database Syst Rev 2006, 4:CD001561.
  • [60]Monami M, Lamanna C, Desideri CM, Mannucci E: DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther 2012, 29(1):14-25.
  • [61]Nesto RW: Beyond low-density lipoprotein: addressing the atherogenic lipid triad in type 2 diabetes mellitus and the metabolic syndrome. Am J Cardiovasc Drugs 2005, 5(6):379-387.
  • [62]Sharma RK, Singh VN, Reddy HK: Thinking beyond low-density lipoprotein cholesterol: strategies to further reduce cardiovascular risk. Vasc Health Risk Manag 2009, 5:793-799.
  • [63]The ENCODE Project Cosortium: An integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489:57-74.
  • [64]Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT, Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E, Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G, Byron R: An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012, 489:83-90.
  • [65]Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S: The accessible chromatin landscape of the human genome. Nature 2012, 489:75-82.
  • [66]Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, Lee K, Canfield T, Weaver M, Sandstrom R, Thurman RE, Kaul R, Myers RM, Stamatoyannopoulos JA: Widespread plasticity in CTCF occupancy linked to DNA Methylation. Genome Res 2012, 22:1680-1688.
  • [67]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12:996-1006.
  • [68]Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A, Raney BJ, Wang T, Hinrichs AS, Zweig AS, Fujita PA, Learned K, Rhead B, Smith KE, Kuhn RM, Karolchik D, Haussler D, Kent WJ: ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res 2010, 38:D620-D625.
  • [69]Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, Diekhans M, Fujita PA, Goldman M, Gravell RC, Harte RA, Hinrichs AS, Kirkup VM, Kuhn RM, Learned K, Maddren M, Meyer LR, Pohl A, Rhead B, Wong MC, Zweig AS, Haussler D, Kent WJ: ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res 2011, 40:1-6. Database issue
  • [70]Blahnik KR, Dou L, Echipare L, Iyengar S, O’Geen H, Sanchez E, Zhao Y, Marra MA, Hirst MA, Costello JF, Korf I, Farnham PJ: Characterization of the Contradictory Chromatin Signatures at the 3′ Exons of Zinc Finger Genes. PLoS One 2011, 6:e17121.
  • [71]O’Geen H, Echipare L, Farnham PJ: Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol Biol 2011, 791:265-286.
  • [72]O’Geen H, Frietze S, Farnham PJ: Using ChIP-seq Technology to Identify Targets of Zinc Finger Transcription Factors. Methods Mol Biol 2010, 649:437-455.
  文献评价指标  
  下载次数:27次 浏览次数:5次